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Abstract

We use Google search data with the aim of predicting unemployment, CPI and

consumer confidence for the US, UK, Canada, Germany and Japan. Google

search queries have previously proven valuable in predicting macroeconomic

variables in an in-sample context. To our knowledge, the more challenging

question of whether such data have out-of-sample predictive value has not yet

been satisfactorily answered. We focus on out-of-sample nowcasting, and extend

the Bayesian Structural Time Series model using the Hamiltonian sampler for

variable selection. We find that the search data retain their value in an out-

of-sample predictive context for unemployment, but not for CPI and consumer

confidence. It may be that online search behaviour is a relatively reliable gauge

of an individual’s personal situation (employment status), but less reliable when

it comes to variables that are unknown to the individual (CPI) or too general

to be linked to specific search terms (consumer confidence).
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1. Introduction

Timely and accurate economic data is invaluable in making sensible invest-

ment and policy decisions. Unfortunately, many macroeconomic time series

are released with a substantial time lag and subject to revisions. Previous

research suggests that nowcasts (predictions of contemporaneous but unknown5

values) that make use of Google search data can outperform both AR(1) models

and survey-based predictors. Improvements in terms of mean absolute predic-

tion error (MAPE) have been found for US inflation (Guzman, 2011), the UK

housing market (McLaren and Shanbhogue, 2011), Swedish private consump-

tion (Lindberg, 2011), German and Israeli unemployment (Askitas and Zimmer-10

mann, 2009; Suchoy, 2009) and US private consumption (Vosen and Schmidt,

2011). Outperformance seems to be particularly pertinent at structural breaks

and extreme observations. Choi and Varian’s (2012) Google search data model

for US unemployment claims yielded an 11% improvement in MAPE relative

to an AR(1) model, but 21% during recessions. D’Amuri and Marcucci (2017)15

find that Google category data is predictive of US unemployment irrespective

of whether the out-of-sample period starts before, during or after the Great

Recession. Similarly, Preis et al. (2013) found that a trading strategy based on

the relative popularity of the search query ‘debt’ outperformed a buy-and-hold

strategy over the period 2004-2011, but in particular during the financial crisis.20

We are interested in three macroeconomic variables (unemployment, con-

sumer price index (CPI) and consumer confidence) for five countries (US, UK,

Canada, Germany and Japan). We follow Scott and Varian (2014a,b) in us-

ing online search data obtained from ‘Google Trends’ and ‘Google Correlate’

as exogenous variables. Google Trends is a service that produces a single time25

series indicating the level of search activity in a specific country for any specific

search term, such as ‘unemployment appeals’. Google Correlate, on the other

hand, produces up to 100 time series that are highly correlated with any (user-

defined) series of interest. (For details, see Stephens-Davidowitz and Varian

(2014).) Scott and Varian (2014a,b) developed the Bayesian Structural Time30
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Series (BSTS) model for the purpose of handling the many regressors obtained

from both data sets. Estimating their model using the entire sample, they pro-

duce monthly ‘nowcasts’ of the macroeconomic variables and found that the

resulting ‘in-sample predictions’ outperformed an AR(1) benchmark as well as

a structural time series (STS) model in terms of MAPE.235

Naturally, caution is always required in extrapolating the findings of such in-

sample analyses to out-of-sample contexts. Several studies have focused on the

out-of-sample performance of Google search data, although they are typically

limited to hand-selected series from Google Trends, while ignoring Google Cor-

relate. For example, Choi and Varian (2012) show that the categories ‘trucks40

& SUVs’ and ‘automotive insurance’ help predict motor vehicle sales, while

D’Amuri and Marcucci (2017) show that the ‘jobs’ category helps forecast US

unemployment. Similarly, Naccarato et al. (2018) use the frequency of the

search term ‘job offers’ to forecast Italian youth unemployment, and Yu et al.

(2018) use the search terms ‘oil consumption’, ‘oil inventory’ and ‘oil price’ to45

predict (changes in) oil consumption. Arguably, all these out-of-sample studies

use somewhat simpler (autoregressive) models than Scott and Varian’s (2014a;

2014b) BSTS model.

The question remains as to whether Scott and Varian’s (2014a; 2014b) BSTS

model using both Google Trends and Correlate data can be employed to make50

effective out-of-sample forecasts. This is no easy task: Scott and Varian (2014b)

(p. 21) themselves note that a disadvantage of using Google Correlate is that the

strongest (in-sample) predictors are often ‘spurious regressors’ lacking a ‘plau-

sible economic justification’ (which may explain why the out-of-sample studies

cited above chose to exclude Google Correlate). To the best of our knowledge,55

the current paper is the first to systematically use Google Correlate in making

out-of-sample nowcasts. Given the high number of potentially relevant time

series obtained from Google Trends and Correlate, the selection of variables

2We thank an anonymous referee for alerting us to the fact that the BSTS software has since
been updated to allow the user to split the full sample into an in-sample and out-of-sample
period.
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is particularly challenging. For this purpose, Scott and Varian (2014a,b) inte-

grate into the BSTS model a spike-and-slab regression with the stochastic search60

variable selection (SSVS) sampler (George and McCulloch, 1997). However, the

SSVS sampler may suffer when the number of predictors or the multicollinearity

among them is high; see e.g. Heaton and Scott (2010). We deviate from Scott

and Varian (2014a,b) by using not only the SSVS but also the Hamiltonian

sampler, which was introduced by Pakman and Paninski (2013) and may be65

beneficial when using Google search data.

We compare nowcasts at a monthly frequency of the BSTS model against

those of the STS benchmark, which does not make use of Google search data, and

find that the BSTS model usually outperforms the benchmark in in-sample set-

tings. In an out-of-sample context, however, the BSTS model based on Google70

Trends data fails to ourperform the benchmark for consumer confidence and

CPI. Moreover, adding Google Correlate data does not improve the perfor-

mance, a finding we suspect is caused by ‘spurious regressors’. Notwithstanding

these results for consumer confidence and CPI, we are able to generalise Scott

& Varian’s (2014a,b) in-sample findings to an out-of-sample context for unem-75

ployment, for which the problem of spurious regressors appears minimal. In

sum, it seems that online search behaviour is a relatively reliable gauge of an

individual’s personal situation (employment status), but is less reliable when it

comes to variables that are unknown to the individual (CPI) or too general to

be linked to specific search terms (consumer confidence).80

Section 2 describes the data, while section 3 describes the BSTS model and

the Hamiltonian sampler. Section 4 presents the results for both an in- and out-

of-sample setting, followed by a brief exploration of alternative transformations

and selection approaches. Finally, we interpret the findings in a broader context.
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2. Data85

2.1. Macroeconomic series

We obtain three macroeconomic series (unemployment, CPI, consumer con-

fidence) for five countries (US, UK, Canada, Germany, Japan) from Febru-

ary 2004 to December 2016 at a monthly frequency (155 observations) from

Bloomberg. These series and countries were selected to facilitate comparison90

with Scott and Varian’s (2014b) earlier findings. While Bloomberg does not re-

port release dates for these series, we obtained approximate release dates from

the reports of the national statistics agencies of the five countries investigated

here. Based on this information, Table 1 shows the approximate time lag,

measured in weeks, in the release dates of the series under investigation. The95

unemployment series shows signs of a trend and seasonal component (Figure

1), which are absent for consumer confidence and CPI (Figures 2 and 3). For

unemployment we take the natural logarithm and account for the trend and

seasonality, while for consumer confidence and CPI we model only the level. All

data transformations are listed in Table A.4 in Appendix A.100

Table 1: Sources and approximate release lags of the macroeconomic series

Release lag (weeks) Source

UN

US ≤ 1 Bureau of Labor Statistics
GE 8 German Federal Statistical Office
CA 1 Statistics Canada
JA 4 Statistics Bureau, Ministry of Internal Affairs and Communications
UK 6 UK Office for National Statistics

CPI

US 2 Bureau of Labor Statistics
GE 2 German Federal Statistical Office
CA 3 Statistics Canada
JA 4 Statistics Bureau, Ministry of Internal Affairs and Communications
UK 2 UK Office for National Statistics

CC

US 2 University of Michigan Consumer Sentiment Index
GE ∗ ICON Wirtschafts- und Finanzmarktforschung
CA ∗ ∗
JA ≤ 1 Economic and Social Research Institute Japan
UK 4 European Commission

Notes: UN = unemployment, CPI = consumer price index, CC = consumer confidence, US
= United States, GE = Germany, CA = Canada, JA = Japan, UK = United Kingdom, ∗ =

release dates not found.
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2.2. Google Trends

Google Trends is a public service available from January 2004, providing

time series of worldwide search activity for (i) specific (user-defined) search

terms and (ii) predefined search categories. Queries in any category are as-

signed by Google to a particular country based on the IP address of the user.3105

For more details on the construction of the Google Trends data, see Stephens-

Davidowitz and Varian (2014). For each macroeconomic series in each country,

we select approximately 60 distinct potentially relevant Google categories (i.e.

3× 60 categories per country). Each category consists of 155 monthly observa-

tions from February 2004 to December 2016. To illustrate, categories selected110

for unemployment include ‘unemployment appeals’ and ‘job listings’. Google

category data associated with unemployment often contains both trends and

seasonal patterns, as illustrated in Figure 4 for the category ‘job listings’. We

‘whiten’ the Google Trends data as in Scott and Varian (2014a) to ensure that

the regression component does not interfere with the structural components of115

the BSTS model. We take first differences to remove the time-varying trend, de-

seasonalise to remove any time-constant seasonality, and demean the remainder.

We select potentially relevant Google categories once, based on their description

by Google, and eliminate any forward-looking bias by using only data available

at the time of our nowcasts.120

2.3. Google Correlate

Like Google Trends, Google Correlate provides time series of Google search

terms dating back to January 2004. Unlike Trends, however, Correlate returns

multiple time series that are highly correlated with any (user-defined) series

of interest. Naturally, we obtain time series that are strongly (positively or125

negatively) correlated with our macroeconomic series. For example, Figure 1

illustrates that the frequency of the search term ‘unemployment appeals’ closely

3If the IP address of the user is unavailable, the domain of the search engine is used; e.g.
queries from google.de are assigned to Germany.
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Figure 1: Unemployment and Google search term ‘unemployment appeals’ (US)
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Figure 2: Consumer confidence (UK)

tracks the macroeconomic US unemployment series. We select at most 50 pos-

itively and 50 negatively correlated queries for each macroeconomic series per

country and remove time series that are constant for more than 12 consecutive130

observations. Again, we ‘whiten’ the data and take the log of time series which

we suspect to contain multiplicative noise; all transformations are listed in Ta-

ble A.5 in Appendix A. To make genuine out-of-sample nowcasts, we feed only
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Figure 3: Consumer price index (UK)
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Figure 4: Google category ‘job listings’ (US)

the historic part of the macroeconomic series to Google Correlate. We amend

our list of search terms annually, in January, after which the values of the se-135

lected series are updated monthly; that is, our out-of-sample nowcasts for 2015

are based on Google search terms that proved informative in the period from

February 2004 to December 2014.
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3. The BSTS model

3.1. Model formulation140

The BSTS model (Scott and Varian, 2014a,b) decomposes a time series yt

as the sum of structural and regression components as follows:

yt = µt + τt + β′xt + εt, εt ∼ N(0, σ2
ε),

µt = µt−1 + δt−1 + ut, ut ∼ N(0, σ2
u),

δt = δt−1 + υt, υt ∼ N(0, σ2
υ), (1)

τt = −
S−1∑
s=1

τt−s + wt, wt ∼ N(0, σ2
w).

Model (1) allows for the presence of a trend with latent level µt, slope δt,

and S = 12 monthly seasonal components {τt, τt−1, ..., τt−S+1}. Together these

structural components form the state vector

αt = (µt, δt, {τt, τt−1, ..., τt−S+1})′

of the (implicit) state space model (see Appendix B). Furthermore, the triple

(µt, δt, τt)
′ is subject to state innovations ηt = (ut, υt, wt)

′, which are assumed

to be independent such that their covariance matrix Q is diagonal. The k ×

1 regression component xt containing Google search data affects the (scalar)

dependent variable yt through the parameter vector β. Finally, yt is exposed145

to random observation noise εt that is independent of the state innovations.

Henceforth, we suppress the subscripts t to denote the entire time series, e.g.

y := (y1, y2, ..., yn)′.

As our benchmark model, we take model (1) under the restriction β = 0

such that no Google search data are used — the ‘structural time series’ (STS)150

model. Our benchmark is more sophisticated than the AR(1) benchmark, which

is often used in the literature. An interesting extension would be to allow the

variance of the error ut to vary over time; see e.g. Stock and Watson (2007)

9



or Clark (2011). To maintain comparability with Scott and Varian (2014a,b),

however, we do not pursue this approach here.155

3.2. Sampling

To estimate model (1), we sample from its full posterior p(α,Q,β, σ2
ε |y)

using a Gibbs sampler. Specifically, the BSTS algorithm (Scott and Varian,

2014b) iterates over the following three steps:

1. sample the states α from p(α|y,Q,β, σ2
ε) using Durbin and Koopman’s160

(2002) state simulation smoother.

2. sample the state variances Q from p(Q|y,α,β, σ2
ε) as in Scott and Varian

(2014a) (p. 132).

3. (a) select variables by drawing samples of the auxiliary variable γ using

the SSVS or Hamiltonian sampler, and165

(b) sample β and σ2
ε from p(β, σ2

ε |y,α,Q,γ).

While the first two steps are standard, a more detailed description of the

last step, spike-and-slab regression using the two different samplers, is warranted

before we move onto a description of our out-of-sample nowcasting procedure.

To sample from the conditional posterior of β and σ2
ε , we use the SSVS algo-170

rithm with the conjugate spike-and-slab prior setup, popularised by George and

McCulloch (1997) and given in the context of the BSTS model by equations

(4)-(6) in Scott and Varian (2014b). The prior setup imposes a normal hier-

archical mixture prior on the regression coefficients β by introducing a binary

parameter vector γ that determines which regressors are included in the model.175

Conditional on γ, the posterior distribution of β and σ2
ε is the well-known pos-

terior of an ordinary linear regression model with conjugate priors (see equation

(7) in Scott and Varian (2014b)).

Alternative prior specifications, which are not explored here, include Car-

valho et al.’s (2009) horseshoe prior and Ročková and George’s (2016) spike-180

and-slab lasso. We follow Scott and Varian (2014a,b) in using the conjugate

priors described above, as these are computationally tractable in combination

with the sampler used.
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Samples of the conditional posterior of γ (given by equation (8) in Scott

and Varian (2014b)) are constructed by means of an (embedded) Gibbs sam-185

pling routine that sequentially draws from the conditional Bernoulli distribution

of γi given γ−i. (Here, γi denotes the i-th element of γ, while γ−i is the vector

γ excluding the i-th element.) However, as Heaton and Scott (2010) point out,

traditional Markov Chain Monte Carlo (MCMC) variable selection methods,

which are used for large sets of regressors, frequently miss regressor combina-190

tions with a high posterior probability. We use the Hamiltonian Monte Carlo

(HMC) method, which is often more efficient than traditional MCMC methods

at exploring the parameter space (Neal, 2011).

To sample from the posterior of γ using HMC, we use Pakman and Paninski’s

(2014) exact Hamiltonian sampler for binary variables. To that end, we augment

the parameter space with a continuous random vector z of the same dimension

as γ. The auxiliary variable z is related to γ by means of

γi =

 0 if zi < 0,

1 if zi ≥ 0, ∀ i = 1, 2, ..., k,

(2)

which we modified slightly from Pakman and Paninski (2013) to match a binary

variable defined on {0, 1}. The joint distribution of z and γ is then given by

p(γ, z) = p(γ)p(z|γ). (3)

For p(z|γ) we adopt the truncated Gaussian distribution, following Pakman and

Paninski (2014). The choice of p(z|γ) in combination with the posterior of γ
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leads to the following potential energy function:

U(z) = −log p(z|γ)− log p(γ|ẏ)

∝ − z
′z

2
− 1

2
log |Ω−1γ |+

1

2
log |V −1γ |+

νε + n

2
log (ssε + SSγ)

− ι′γlog %− (k − ι′γ)log (1− %),

(4)

where the vector ι consists of ones and is of appropriate length.

3.3. Out-of-sample nowcasts195

To make in-sample nowcasts of a macroeconomic variable yt+1, the model is

estimated using the entire dataset, as is standard in the literature. To make out-

of-sample nowcasts of yt+1, on the other hand, we must consider the (posterior)

predictive distribution of yt+1 conditional on the information set It+1, which

contains the predictors up to (and including) time t + 1, while the macroeco-200

nomic series are only included up to (and including) time t. To illustrate, on 1

February we may use US Google search data, where we include data from Jan-

uary, in order to produce a nowcast of US CPI in January, while ‘actual’ CPI

numbers are not released by the Bureau of Labor Statistics until two weeks later

(mid February). We obtain nowcasts (point predictions) by taking the mean of205

the posterior predictive distribution p(yt+1|It+1) and evaluate these using the

root mean squared error (RMSE) criterion. We also report the mean absolute

prediction error (MAPE) to facilitate comparison with previous literature.

4. Results

This section compares the BSTS and STS models to test whether Scott and210

Varian’s (2014a; 2014b) in-sample results persist in an out-of-sample context

for three macroeconomic series and five countries between March 2004 and De-
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cember 2016 (154 monthly observations).4 Like Scott and Varian (2014a,b), we

focus on nowcasts at a monthly frequency. For the out-of-sample analysis, we

use an initial estimation window from March 2004 to August 2012 (104 observa-215

tions, roughly two thirds of the data) to produce predictions for the remaining

period using an expanding window. We present results based on (i) exclusively

category (Trends) data and (ii) both category and Correlate data. Further, for

each of these we use both the SSVS and the Hamiltonian sampler, leading to

four different BSTS models. The STS model nowcasts are used as the bench-220

mark. We report two performance measures – root mean square error (RMSE)

and mean absolute prediction error (MAPE) – for all five models, five countries

and three macroeconomic series, leading to 2 × 5 × 5 × 3 = 150 numbers. We

report these numbers separately for the in-sample (Table 2) and out-of-sample

(Table 3) settings.225

To facilitate across-country comparisons, we rank all models separately for

each country. This allows us to calculate an average (across-country) rank for

each model, where rank 1 denotes the best predictions.

We use the same default prior settings as in Scott and Varian (2014b) across

all series and models, which implies κ = 1, w = 0.5, ν = 0.01, R2
e = 0.5 and the230

expected model size m = 5. For the Hamiltonian sampler we use a static travel

time of T = 2 1
2π. We draw 3, 000 samples from the posterior distribution and

use a burn-in of 1, 000 draws for all series and models, which proved sufficient

for stable predictions.5

4.1. In-sample estimates235

In an in-sample context, we find that the BSTS models generally produce

more accurate estimates than the STS benchmark for all macroeconomic series

under investigation and all countries, irrespective of the performance measure

4The number of nowcasts is one fewer than the number of observations, as we use first
differences to make the nowcasts.

5Increasing the number of samples to 20, 000 for selected periods reduced the variance of
the posterior mean predictions, but did not noticeably improve our predictions or change the
relative performance of the models.
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used (Table 2). The relative improvement over the benchmark is in the range of

1− 5% for both performance measures.6 The BSTS model using both category240

and Correlate data does not consistently improve over the BSTS model without

correlate data, irrespective of the sampler used. For the data investigated here,

the Hamiltonian sampler does not appear to outperform the SSVS sampler.

4.2. Out-of-sample nowcasts

In an out-of-sample context, the BSTS models generally produce more ac-245

curate predictions than the STS benchmark for the unemployment series, but

not for the consumer confidence and CPI series (Table 3). This finding seems

to hold for most countries and both performance measures.

For the unemployment series, using Google category data leads to gains for

four out of five countries (Germany being the exception), while using both cat-250

egory and Correlate data leads to gains for three out of five countries (Germany

and Japan being the exceptions). Improvements are in the range of 1− 5% per-

cent – relatively modest gains, but recall that our in-sample results were in the

same range. In this light, the fact that Google search data yields roughly the

same improvement in both in- and out-of-sample contexts testifies to its robust255

value in predicting unemployment.

For consumer confidence and CPI, on the other hand, we find that using

Google category data does not systematically improve our out-of-sample now-

casts. For consumer confidence in particular, the nowcast errors are larger than

those of the benchmark. We find that using Google Correlate data does not260

improve our nowcasts of consumer confidence and CPI in an out-of-sample con-

text. Instead, these correlations often break down after the estimation period

on which they are based, rendering them useless for out-of-sample nowcasts. In-

deed, the results may be worse than those obtained using category data alone.

The strength of Google Correlate, i.e. the ability to return many potentially265

6Scott and Varian (2014a) report a relative improvement of roughly 14 percent for the BSTS
model over an AR(1) model for the US consumer confidence series. Our findings relative to
an AR(1) model (not reported) are in line with this result.
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relevant series, is thus also its weakness, since it can also identify many search

queries that are highly correlated with a given time series even in the absence of

any underlying (predictive) relationship. To investigate the number of spurious

correlations, we focus on the US and simply count the number of correlated

series for which the out-of-sample correlation is less than half the in-sample270

correlation. For consumer confidence and CPI, the majority of the 89 retrieved

series can be classified as spurious (48 and 77, respectively), which explains why

the BSTS models with Correlate data do not outperform those without. For

unemployment, on the other hand, we find only one spurious correlation7

The best performing version of the BSTS model for US unemployment uses275

both category and Correlate data. Figure 5 depicts the cumulative squared pre-

diction errors (sum of squared errors, SSE) over time for both the benchmark

model and the BSTS model, again using both samplers. Prediction errors accu-

mulate slowly but consistently in all models during the initial estimation window

from March 2004 to August 2012, but more quickly for the benchmark model.280

The added value of using Google search data is thus spread out over time; all

nowcasts are somewhat improved. However, some improve more than others,

since during the 2008 financial crisis we see an upward shift in the SSE of the

benchmark model relative to both BSTS models. This echoes Choi and Varian’s

(2012) finding that Google search data can be especially valuable in predicting285

turning points, such as financial crises. After our initial estimation window, the

end of which is indicated by the dotted line, the SSE of the benchmark model

continues to diverge from that of both BSTS models (perhaps even at a slightly

faster rate), confirming our view that Google category and Correlate data have

robust out-of-sample predictive value for unemployment.290

7US unemployment correlates highly with the search term ‘spider solitaire’ in the in-sample
but not the out-of-sample period. While one may be tempted to speculate that playing
computer games leads to unemployment, this correlation is spurious.
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Figure 5: US unemployment cumulative SSE for the BSTS model with SSVS and Hamil-
tonian sampler and the STS model. The BSTS models use Google Correlate and category
data.

4.3. Sensitivity analysis

In this section we zoom in on the US macroeconomic series and consider

how our out-of-sample results change if we use other transformations, selection

approaches and data frequencies. As the results in the previous section suggest

that Google Correlate data is of limited use in our application, we focus on295

Google category data alone. The BSTS model is designed to handle a large

number of predictors, but at the heart of its effectiveness is still a bias-variance

trade-off. It may be argued that including 50 to 75 (monthly) categories is not

necessarily optimal with respect to this trade-off. Therefore, we explore whether

the use of fewer categories — or using category data at a weekly frequency —300

affects our results. Specifically, we (i) use category data at a weekly frequency

and apply the usual transformations, (ii) log difference the category series but

do not remove the structural components, (iii) difference the category series but

do not remove the structural components, (iv) difference the category series and

remove the structural components, (v) select only 10 to 20 categories for each305

of the three macroeconomic series and apply the transformations as usual.

For the unemployment series, we find that the prediction errors of the BSTS

model with weekly category data are lower than those of the monthly category

16



data: improvements in the prediction errors range between 1− 3% for both the

Hamiltonian and the SSVS sampler. Caution is needed in interpreting this as310

evidence that aggregating Google search queries leads to information loss, as

fewer categories were available for weekly data, which arguably simplifies the

variable-selection problem. For (ii)-(v), we also find that the general result of

section 4.2 holds: Google search data help nowcast unemployment but not CPI

and consumer confidence. The MAPEs and RMSEs of the BSTS models are315

lower than those of the STS model for the unemployment series, whereas the

results for the consumer confidence and CPI series are not consistently improved

compared to those of the STS model. The selected categories and corresponding

out-of-sample results are available on request.
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5. Discussion and conclusion320

In an in-sample setting, we found that the BSTS model outperforms the

STS model for all three macroeconomic series, confirming the in-sample results

reported by Scott and Varian (2014b). Out-of-sample outperformance persisted

only for unemployment: for four out of five countries when using category data,

and three of out five countries when using both category and Correlate data.325

In other words, we have been able to generalise Scott and Varian’s (2014a,b)

in-sample findings for unemployment, but not consumer confidence and CPI, to

an out-of-sample context. In addition, we have demonstrated the viability of

using the Hamiltonian sampler for the BSTS model, although for this particular

application it appeared to have little added value over the SSVS sampler.330

From these findings we conclude that Google search data appear most help-

ful when the series under investigation directly relates to an individual’s per-

sonal situation and is closely linked with specific search behaviour (such as

employment status), but is less reliable when it comes to macroeconomic mea-

sures that are unknown to the individual (such as CPI) or too general to be335

linked to specific search terms (such as consumer confidence). For example,

many unemployed people may have known in advance that they were at risk

of becoming unemployed, knowledge that would have generated specific and

predictable online search behaviour. Conversely, few individuals can precisely

estimate monthly CPI figures and, even if they could, the impact on their search340

behaviour is likely to be either minimal or subject to high individual variation.

Similarly, although consumer confidence is in principle determined by a sum

over households, each of which can be assumed to know whether confidence is

warranted (or otherwise) based on its own circumstances, this knowledge ap-

pears insufficient to generate specific and predictable search behaviour. Our345

finding that improvements over the baseline model are confined to predictions

of macroeconomic series that have a particularly close relationship with user

search behaviour echoes work in the field of consumer action; for example, Goel

et al. (2010) find that search data are predictive of specific consumer actions
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occurring in the near future, such as going to the cinema.350

The weak link between search behaviour and CPI as well as consumer confi-

dence is likely to be one of the main causes of the many spurious queries obtained

by Google Correlate. The monthly frequency of the macroeconomic series yields

only a limited number of observations (155 observations starting in February

2004). Search queries genuinely related to our macroeconomic series may thus355

be swamped by many spurious correlations. Possibly for the same reason, both

our in-sample and out-of-sample predictions of unemployment improved when

using weekly rather than monthly data, even though (or perhaps because) fewer

categories were available. For CPI and consumer confidence, these spurious cor-

relations cannot effectively be filtered out and researchers trying to predict such360

variables may be better off by hand-picking Google search terms.

Finally, our results are generally consistent across countries. A notable ex-

ception is Germany, for which unemployment nowcasts were not improved by

Google search data. Although we have no immediate explanation for this ex-

ception, we note that unemployment in Germany, unlike in the other countries365

investigated, dropped steadily over the years following the financial crisis. Fur-

ther research into more macroeconomic series in different regions could further

test the robustness of our results.
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AppendixA. Data Transformations430

We took log differences of the categories retrieved from Google Trends; the

differenced series are economically, and statistically, more meaningful to inter-

pret given the downward trend. Thereafter we removed the remaining structural

components of the log-differenced series to avoid interference with the structural

component of the BSTS model. Intuitively, if the structural components of a435

Google category series are of importance for modelling a macroeconomic se-

ries, a seasonal or trending pattern should be seen in the series itself. Since the

structural components are already modelled in the BSTS model, they can safely

be removed from the Google category series. These transformations effectively

‘whiten’ the category data. We decided not to deseasonalise or detrend the440

Google Correlate data, as these consist of more specific search queries whose

structural components do not necessarily appear stable over time. The specific

transformations of the Google search data are shown in Table A.4.

For the macroeconomic series we took the log of unemployment, which likely

has multiplicative noise, as the magnitude of shocks is dependent on the level.445

As the transformed unemployment series still seemed to contain a trend and a

seasonal component for our sample, thus detrended it.
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AppendixB. State space matrices

A generic linear Gaussian state space model formulation is:

yt = Z ′αt + β′xt + εt, εt ∼ N(0, σ2
ε),

αt+1 = Tαt +Rηt, ηt ∼ N(0,Q), (B.1)

for t = 1, ..., n. The observation equation contains a (scalar) dependent variable

yt, an m×1 latent state vector αt, a k×1 regression component xt and a random

observation noise εt with variance σ2
ε . The matrix Z and vector β, assumed

to be of appropriate dimensions, describe how the state αt and the regression

component xt, respectively, influence the observation yt. The state transition

equation contains a (square) ‘transfer’ matrix T , a ‘selector’ matrix R, and a

state disturbance vector ηt with covariance matrix Q. Below, we specify the

system matrices T , R and Z that are used to obtain the BSTS model:

Z =
[
1 0 1 0 0 0 0 0 0 0 0 0 0

]
,

R =



1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0



,
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T =



1 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0



.
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