

ECC2K-130 on NVIDIA GPUs

Citation for published version (APA):
Bernstein, D. J., Chen, H.-C., Cheng, C. M., Lange, T., Niederhagen, R. F., Schwabe, P., & Yang, B. Y. (2010).
ECC2K-130 on NVIDIA GPUs. In G. Gong, & K. C. Gupta (Eds.), Progress in Cryptology - INDOCRYPT 2010
(11th International Conference on Cryptology in India, Hyderabad, India, December 12-15, 2010. Proceedings)
(pp. 328-346). (Lecture Notes in Computer Science; Vol. 6498). Springer. https://doi.org/10.1007/978-3-642-
17401-8_23

DOI:
10.1007/978-3-642-17401-8_23

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://doi.org/10.1007/978-3-642-17401-8_23
https://doi.org/10.1007/978-3-642-17401-8_23
https://doi.org/10.1007/978-3-642-17401-8_23
https://research.tue.nl/en/publications/6c84a356-e072-45ae-b370-90fac0b2e37c

Computing small discrete logarithms faster

Daniel J. Bernstein1,2 and Tanja Lange2

1 Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607–7053, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, the
Netherlands

tanja@hyperelliptic.org

Abstract. Computations of small discrete logarithms are feasible even
in “secure” groups, and are used as subroutines in several cryptographic
protocols in the literature. For example, the Boneh–Goh–Nissim degree-
2-homomorphic public-key encryption system uses generic square-root
discrete-logarithm methods for decryption. This paper shows how to use
a small group-specific table to accelerate these subroutines. The cost
of setting up the table grows with the table size, but the acceleration
also grows with the table size. This paper shows experimentally that
computing a discrete logarithm in an interval of order ` takes only 1.93 ·
`1/3 multiplications on average using a table of size `1/3 precomputed
with 1.21 · `2/3 multiplications, and computing a discrete logarithm in a
group of order ` takes only 1.77 · `1/3 multiplications on average using a
table of size `1/3 precomputed with 1.24 · `2/3 multiplications.

Keywords: Discrete logarithms, random walks, precomputation.

1 Introduction

Fully homomorphic encryption is still prohibitively slow, but there are much
more efficient schemes achieving more limited forms of homomorphic encryp-
tion. We highlight Freeman’s variant [11] of the scheme by Boneh, Goh, and
Nissim [7]. The Boneh–Goh–Nissim (BGN) scheme can handle adding arbitrary
subsets of encrypted data, multiplying the sums, and adding any number of the
products. Freeman’s variant works in groups typically encountered in pairing-
based protocols. The scheme is vastly more efficient than schemes handling un-
limited numbers of additions and multiplications. Encryption takes only one
exponentiation, as does addition of encrypted messages; multiplication takes a
pairing computation.

The limitation to one level of multiplication means that polynomial expres-
sions of degree at most 2 can be evaluated over the encrypted messages, but

* This work was supported by the National Science Foundation under grant 1018836,
by the Netherlands Organisation for Scientific Research under grant 639.073.005, and
by the European Commission under Contract ICT-2007-216676 ECRYPT II. Perma-
nent ID of this document: b83446575069e4e1d5517415fa8a2421. Date: 2012.08.12.

2 Daniel J. Bernstein and Tanja Lange

this is sufficient for a variety of protocols. For example, [7] presented protocols
for private information retrieval, elections, and generally universally verifiable
computation. There are 377 citations of [7] so far, according to Google Scholar.

The BGN protocol does not have any built-in limit on the number of cipher-
texts added, but it does take more time to decrypt as this number grows. The
problem is that decryption requires computing a discrete logarithm, where the
message is the unknown exponent. If this message is a sum of B products of
sums of A input messages from the space {0, . . . ,M}, then the final message can
be essentially anywhere in the interval [0, (AM)2B]. This means that even if the
space for the input messages is limited to bits {0, 1}, the discrete-logarithm com-
putation needs to be able to handle the interval [0, A2B]. For “random” messages
the result is almost certainly in a much shorter interval, but most applications
need to be able to handle non-random messages.

Boneh, Goh, and Nissim suggested using Pollard’s kangaroo method for the
discrete-logarithm computation. This method runs in time Θ(`1/2) for an interval
of size `. This bottleneck becomes quite troublesome as A and B grow.

For larger message spaces, Hu, Martin, and Sunar in [18] sped up the discrete-
logarithm computation at the cost of expanding the ciphertext length and slow-
ing down encryption and operations on encrypted messages. They suggested
representing the initial messages by their residues modulo small coprime num-
bers d1, . . . , dj with

∏
di > (AM)2B, and encrypt these j residues separately.

This means that the ciphertexts are j times as long and that each operation on
the encrypted messages is replaced by j operations of the same type on the com-
ponents. The benefit is that each discrete logarithm is limited to [0, (Adi)

2B],
which is a somewhat smaller interval. The original messages are reconstructed
using the Chinese remainder theorem.

Contributions to BGN. This paper explains (Section 3) how to speed up
computations of small discrete logarithms, i.e., discrete logarithms in small in-
tervals. The speedup requires a one-time computation of a small group-specific
table. The speedup grows as the table grows; an interesting special case is a table
of size Θ(`1/3), speeding up the discrete logarithm to Θ(`1/3) group operations.
The space for the table (and the one-time cost for computing the table) is not a
problem for the sizes of ` used in these applications.

Our experiments (Section 4) show discrete logarithms in an interval of order
` taking only 1.93 · `1/3 multiplications on average using a table of size `1/3.
Precomputation of the table used 1.21 · `2/3 multiplications. This paper also ex-
plains (Section 5) how to compress each table entry below lg ` bits with negligible
overhead.

This algorithm directly benefits the BGN scheme for any message size M . As
an illustration, consider the common binary case M = 1, and assume A = B.
The cost of decryption then drops from Θ(A3/2) (superlinear in the number of
additions carried out) to just Θ(A), using a table of size Θ(A). The same speedup
means that [18] can afford to use fewer moduli, saving both space and time.

Further applications of discrete logarithms in small intervals. Many
protocols use only degree-1-homomorphic encryption: i.e., addition without any

Computing small discrete logarithms faster 3

multiplications. The pairing used in the BGN protocol is then unnecessary: one
can use a faster elliptic curve that does not support pairings. Decryption still
requires a discrete-logarithm computation, this time on the elliptic curve rather
than in a multiplicative group. These protocols can also use Paillier’s homo-
morphic cryptosystem, but elliptic curves provide faster encryption and smaller
ciphertexts.

As an example we mention the basic aggregation protocol proposed by Kur-
sawe, Danezis, and Kohlweiss in [21] to enable privacy for smart-meter power-
consumption readings. The power company obtains the aggregated consumptions∑
cj in the exponent as g

∑
cj , and compares this to its own measurement of the

total consumption c by checking whether logg(g
∑
cj/gc) lies within a tolerance

interval. This is another example of a discrete-logarithm computation in a small
fixed interval within a large, secure group; we use a small group-specific table
to speed up this computation, allowing larger intervals, more aggregation, and
better privacy. In cases of sufficiently severe cheating, the discrete logarithm will
be too large, causing any discrete-logarithm computation to fail; one recognizes
this case by seeing that the computation is running several times longer than
expected.

Applications of discrete logarithms in small groups. Another interesting
category of applications uses “trapdoor discrete-logarithm groups”: groups in
which computations of discrete logarithms are feasible with some trapdoor in-
formation and hard otherwise. These applications include the Maurer–Yacobi ID-
based encryption system in [24], for example, and the Henry–Henry–Goldberg
privacy-preserving protocol in [16].

Maurer and Yacobi in [24, Section 4] introduced a construction of a trapdoor
discrete-logarithm group, with a quadratic gap between the user’s cost and the
attacker’s cost. It is generally regarded as preferable to have constructive appli-
cations be polynomial time and cryptanalytic computations exponential time,
but this quadratic gap is adequate for practical applications. A different con-
struction uses Weil descent with isogenies as trapdoor; see [26] for credits and
further discussion of both constructions.

The Maurer–Yacobi construction works as follows. Choose an RSA modulus
n = pq, where p−1 and q−1 have many medium-size factors — distinct primes `i
chosen small enough that a user knowing the factors of p− 1 and q− 1 can solve

discrete logarithms in each of these subgroups, using Θ(`
1/2
i) multiplications

modulo p or q, but large enough that the p−1 method for factoring n, using Θ(`i)
multiplications modulo n, is out of reach. The group (Z/n)∗ is then a trapdoor
discrete-logarithm group. The trapdoor information consists of p, q, and the
primes `i. Note that the trapdoor computation here consists of computations of
discrete logarithms in small groups, not small intervals inside larger groups; this
turns out to make our techniques slightly more efficient.

Henry and Goldberg in [15] presented a fast GPU implementation of the trap-
door computation of discrete logarithms, using Pollard’s rho method. A simple
GMP-based implementation of our algorithm on a single core of a low-cost AMD
CPU takes an order of magnitude less wall-clock time than the optimized GPU

4 Daniel J. Bernstein and Tanja Lange

implementation described in [15], for the same DLP sizes considered in [15], even
though the GPU is more than 30 times faster than the CPU core at modular
multiplications. Specifically, for a group of prime order almost exactly 248, our ex-
periments show a discrete-logarithm computation taking just 115729 ≈ 1.77 ·216
multiplications on average, using a table of size 65536 = 216. Precomputation of
the table used 5333245354 ≈ 1.24 · 232 multiplications.

Previous work. Escott, Sager, Selkirk, and Tsapakidis in [9, Section 4.4] showed
experimentally that attacking a total of 2, 3, 4, 5 DLPs with the parallel rho
method took, respectively, 1.52, 1.90, 2.22, 2.49 times longer than solving just
one DLP. The basic idea, which [9] said “has also been suggested by Silverman
and Stapleton” in 1997, is to compute logg h1 with the rho method; compute
logg h2 with the rho method, reusing the distinguished points produced by h1;
compute logg h3 with the rho method, reusing the distinguished points produced
by h1 and h2; etc.

Kuhn and Struik in [20] analyzed this method and concluded that solving
a batch of L discrete logarithms in a group of prime order ` reduces the cost
of an average discrete logarithm to Θ(L−1/2`1/2) multiplications — but only for
L � `1/4; see [20, Theorem 1]. Each discrete logarithm here costs at least
Θ(`3/8); see [20, footnote 5].

Hitchcock, Montague, Carter, and Dawson in [17, Section 3] viewed the com-
putation of many preliminary discrete logarithms logg h1, logg h2, . . . as a pre-
computation for the main computation of logg hk, and analyzed some tradeoffs
between the main computation time and the precomputation time. Two much
more recent papers, independent of each other, have instead emphasized tradeoffs
between the main computation time and the space for a table of precomputed
distinguished points. The earlier paper, [22] by Lee, Cheon, and Hong, pointed
out that these algorithms are tools not just for the cryptanalyst but for the
cryptographer, specifically for trapdoor discrete-logarithm computations. The
later paper, our paper [6], pointed out that these algorithms illustrate the gap
between the time and space taken by an attack and the difficulty of finding the
attack, causing trouble for security definitions in the provable-security literature.
Both [22] and [6] clearly break the Θ(`3/8)-time-per-discrete-logarithm barrier
from [20].

In this paper we point out that the same idea, suitably adapted, works not only
for discrete logarithms in small groups (“rho”) but also for discrete logarithms
in small intervals (“kangaroos”). This is critical for BGN-type protocols. We
also point out three improvements applicable to both the rho setting and the
kangaroo setting: we reduce the number of multiplications by a constant factor
by choosing the table entries more carefully; we further reduce the number of
multiplications by choosing the iteration function more carefully; and we reduce
the space consumed by each table entry. This paper includes several illustrative
experiments.

Computing small discrete logarithms faster 5

2 Review of generic discrete-logarithm algorithms

This section reviews several standard “square-root” methods to compute discrete
logarithms in a group of prime order `. Throughout this paper we write the group
operation multiplicatively, write g for the standard generator of the group, and
write h for the DLP input; our objective is thus to compute logg h, i.e., the

unique integer k modulo ` such that h = gk.
All of these methods are “generic”: they work for any order-` group, given

an oracle for multiplication (and assuming sufficient hash randomness, for the
methods using a hash function). “Square-root” means that the algorithms take
Θ(`1/2) multiplications on average over all group elements h.

Shanks’s baby-step-giant-step method. The baby-step-giant-step method
[30] computes d`/W e “giant steps” g0, gW , g2W , g3W , . . . and then computes a
series of W “baby steps” h, hg, hg2, . . . , hgW−1. Here W is an algorithm pa-
rameter. It is easy to see that there will be a collision giW = hgj , revealing
logg h = iW − j.

Normally W is chosen as Θ(`1/2), so that there are O(`1/2) multiplications in
total; more precisely, as (1+o(1))`1/2 so that there are ≤ (2+o(1))`1/2 multipli-
cations in total. Interleaving baby steps with giant steps, as suggested by Pollard
in [28, page 439, top], obtains a collision after (4/3+o(1))`1/2 multiplications on
average. We have recently introduced a “two grumpy giants and a baby” variant
that reduces the constant 4/3; see [5].

The standard criticism of these methods is that they use a large amount of
memory, around `1/2 group elements. One can reduce the giant-step storage to,
e.g., `1/3 by taking W as `2/3, but this also increases the average number of baby
steps to `2/3. This criticism is addressed by the rho and kangaroo methods dis-
cussed below, which drastically reduce space usage while still using just Θ(`1/2)
multiplications.

Pollard’s rho method. Pollard’s original rho method [27, Section 1] computes
a pseudorandom walk 1, F (1), F (F (1)), Here F (u) is defined as gu or u2 or
hu, depending on whether a hash of u is 0 or 1 or 2. Each iterate Fn(1) then has
the form gyhx for some easily computed pair (x, y) ∈ (Z/`)2, and any collision
gyhx = gy

′
hx

′
with (x, y) 6= (x′, y′) immediately reveals logg h. One expects

a sufficiently random-looking walk on ` group elements to collide with itself
within O(`1/2) steps. There are several standard methods to find the collision
with negligible memory consumption.

Van Oorschot and Wiener in [33] proposed running many walks in parallel,
starting from different points gyhx and stopping each walk when it reaches a
“distinguished point”. Here a fraction 1/W of the points are defined (through
another hash function) as “distinguished”, where W is an algorithm parameter;
each walk reaches W points on average. One checks for collisions only among the
occasional distinguished points, not among all of the group elements produced.
The critical observation is that if two walks reach the same group element then
they will eventually reach the same distinguished point — or will enter cycles,
but cycles have negligible chance of appearing if W is below the scale of `1/2.

6 Daniel J. Bernstein and Tanja Lange

There are many other reasonable choices of F . One popular choice — when
there are many walks as in [33], not when there is a single walk as in [27,
Section 1] — is a “base-g r-adding walk”: this means that the hash function has
r different values, and F (u) is defined as s1u or s2u or . . . or sru respectively,
where s1, s2, . . . , sr are precomputed as random powers of g. One then starts
each walk at a different power hx. This approach has several minor advantages
(for example, x is constant in each walk and need not be updated) and the major
advantage of simulating a random walk quite well as r increases. See, e.g., [29],
[34], and [5] for further discussion of the impact of r. The bottom line is that
this method finds a discrete logarithm within (

√
π/2 + o(1))`1/2 multiplications

on average.
The terminology “r-adding walk” is standard in the literature but the termi-

nology “base-g r-adding walk” is not. We use this terminology to distinguish a
base-g r-adding walk from a “base-(g, h) r-adding walk”, in which s1, s2, . . . , sr
are precomputed as products of random powers of g and h. This distinction is
critical in Section 3.

Pollard’s kangaroo method. An advantage of baby-step-giant-step, already
exploited by Shanks in the paper [30] introducing the method, is that it imme-
diately generalizes from computing discrete logarithms in any group of prime
order ` to computing discrete logarithms in any interval of length ` inside any
group of prime order p ≥ `. The rho method uses Θ(p1/2) group operations,
often far beyond Θ(`1/2) group operations.

Pollard in [27, Section 3] introduced a “kangaroo” method that combines the
advantages of the baby-step-giant-step method and the rho method: it takes only
Θ(`1/2) group operations to compute discrete logarithms in an interval of length
`, while still using negligible memory. This method

– chooses a base-g r-adding iteration function whose steps have average expo-
nents Θ(`1/2), instead of exponents chosen uniformly modulo `;

– runs a walk starting from gy (the “tame kangaroo”), where y is at the right
end of the interval;

– records the W th step in this walk (the “trap”), where W is Θ(`1/2); and
– runs a walk (the “wild kangaroo”) starting from h, checking at each step

whether this walk has fallen into the trap.

van Oorschot and Wiener in [33] proposed a parallel kangaroo method in which
tame kangaroos start from gy for many values of y, all close to the middle of the
interval, and a similar number of wild kangaroos start from hgy for many small
values of y. Collisions are detected by distinguished points as in the parallel rho
method, but the distinguished-point property is chosen to have probability con-
siderably higher than 1/W ; walks continue past distinguished points. The walks
are adjusted to avoid collisions between tame kangaroos and to avoid collisions
between wild kangaroos. Several subsequent papers have proposed refinements
of the kangaroo method, obtaining constant-factor speedups.

The Nechaev–Shoup bound. Shoup proved in [31] that all generic discrete-
logarithm algorithms have success probability O(m2/`) after m multiplications.

Computing small discrete logarithms faster 7

(The same bound had been proven by Nechaev in [25] for a more limited class
of algorithms, which one might call “representation oblivious” generic discrete-
logarithm algorithms.) All generic discrete-logarithm algorithms therefore need
Ω(`1/2) multiplications on average; i.e., the usual square-root discrete-logarithm
algorithms are optimal up to a constant factor. A closer look shows that the
lower bound is (

√
1/2 + o(1))`1/2, so both the baby-step-giant-step method and

the rho method are within a factor 2 + o(1) of optimal.
There are much faster discrete-logarithm algorithms (e.g., index-calculus al-

gorithms) for specific classes of groups. However, the conventional wisdom is
that these square-root algorithms are the fastest discrete-logarithm algorithms
for “secure” groups: a sensibly chosen elliptic-curve group, for example, or the
order-` subgroup of F∗p for sufficiently large p.

In the rest of this paper we discuss algorithms that improve upon these square-
root algorithms by a non-constant factor. Evidently these improved algorithms
do not fit Shoup’s model of “generic” algorithms — but these improved algo-
rithms do apply to “secure” groups. The algorithms deviate from the “generic”
model by requiring an extra input, a small table that depends on the group but
not on the particular discrete logarithm being computed. The table is set up by
a generic algorithm, and if one views the setup and use of the table as a single
unified algorithm then Shoup’s bound applies to that algorithm; but if the table
is set up once and used enough times to amortize the setup costs then each use
of the table evades Shoup’s bound.

3 Using a small table to accelerate generic
discrete-logarithm algorithms

This section explains how to use a small table to accelerate Pollard’s rho and
kangaroo methods. The table depends on the group, and on the base point g, but
not on the target h. For intervals the table depends on the length of the interval
but not on the position of the interval: dividing h by gA reduces a discrete
logarithm in the interval {A,A+ 1, . . . , A+ `− 1} to a discrete logarithm in the
interval {0, 1, . . . , `− 1}, eliminating the influence of A.

The speedup factor grows as the square root of the table size T . As T grows,
the average number of multiplications needed to compute a discrete logarithm
drops far below the ≈`1/2 multiplications used in the previous section.

The cost of setting up the table is larger than `1/2, also growing with the
square root of T . However, this cost is amortized across all of the targets h
handled with the same table. Comparing the table-setup cost (`T)1/2 to the
discrete-logarithm cost (`/T)1/2 shows that the table-setup cost becomes negli-
gible as the number of targets handled grows past T .

The main parameters in this algorithm are the table size T and the walk
length W . Sensible parameter choices will satisfy W ≈ α(`/T)1/2, where α is a
small constant discussed below. Auxiliary parameters are various decisions used
in building the table; these decisions are analyzed below.

8 Daniel J. Bernstein and Tanja Lange

The basic algorithm. To build the table, simply start some walks at gy for
random choices of y. The table entries are the distinct distinguished points pro-
duced by these walks, together with their discrete logarithms.

It is critical here for the iteration function used in the walks to be independent
of h. A standard base-g r-adding walk satisfies this condition, and for simplicity
we focus on the case of a base-g r-adding walk, although we recommend that
implementors also try “mixed walks” with some squarings. Sometimes walks
collide (this happens frequently when parameters are chosen sensibly), so setting
up the table requires more than T walks; see below for quantification of this
effect.

To find the discrete logarithm of h using this table, start walks at hx for
random choices of x, producing various distinguished points hxgy, exactly as in
the usual rho method. Check for two of these new distinguished points colliding,
but also check for one of these new distinguished points colliding with one of the
distinguished points in the precomputed table. Any such collision immediately
reveals logg h.

In effect, the table serves as a free foundation for the list of distinguished
points naturally accumulated by the algorithm. If the number of h-dependent
walks is small compared to T (this happens when parameters are chosen sensibly)
then one can reasonably skip the check for two of the new distinguished points
colliding; the algorithm almost always succeeds from collisions with distinguished
points in the precomputed table.

Special cases. The extreme case T = 0 of this algorithm is the usual rho method
with a base-g r-adding walk (or, more generally, the rho method with any h-
independent iteration function). However, our main interest is in the speedups
provided by larger values of T .

We also draw attention to the extreme case r = 1 with exponent 1, simply
stepping from u to gu. In this case the main “rho” computation consists of
taking, on average, W baby steps hx, hxg, hxg2, . . . and then looking up the
resulting distinguished point in a table. What is interesting about this case is its
evident similarity to the baby-step-giant-step method, but with the advantage
of carrying out a table access only after W baby steps; the usual baby-step-
giant-step method checks the table after every baby step. What is bad about
this case is that the walk is highly nonrandom, requiring Θ(`) steps to collide
with another such walk; larger values of r create collisions within Θ(`1/2) steps.

Recall from Section 1 the classic algorithm to solve multiple discrete loga-
rithms: for each k in turn, compute logg hk with the rho method, reusing the
distinguished points produced by h1, . . . , hk−1. The logg hk part of this com-
putation obviously fits the algorithm discussed here, with T implicitly defined
as the number of distinguished points produced by h1, . . . , hk−1. We empha-
size, however, that this is a special choice of T , and that the parameter curve
(T,W) used implicitly in this algorithm as k varies does not obey the relation-
ship W ≈ α(`/T)1/2 mentioned above. Treating T and W as explicit parameters
allows several optimizations that we discuss below.

Computing small discrete logarithms faster 9

Optimizing the walk length. Assume that W ≈ α(`/T)1/2, and consider the
chance that a single walk already encounters one of the T distinguished points
in the table, thereby solving the DLP. The T table entries were obtained from
walks that, presumably, each covered about W points, for a total of TW points.
The new walk also covers about W points and thus has TW 2 ≈ α2` collision
opportunities. If these collision opportunities were independent then the chance
of escaping all of these collisions would be (1− 1/`)α

2` ≈ exp(−α2).
This heuristic analysis suggests that a single walk succeeds with, e.g., prob-

ability 1 − exp(−1/16) ≈ 6% for α = 1/4, or probability 1 − exp(−1/4) ≈ 22%
for α = 1/2, or probability 1 − exp(−1) ≈ 63% for α = 1, or probability
1− exp(−4) ≈ 98% for α = 2.

The same analysis also suggests that the end of the precomputation, finding
the T th point in the table, will require trying exp(1/16) ≈ 1.06 length-W walks
for α = 1/4, exp(1/4) ≈ 1.28 length-W walks for α = 1/2, exp(1) ≈ 2.72
length-W walks for α = 1, or exp(4) ≈ 54.6 length-W walks for α = 2.

The obvious advantage of taking very small α is that one can reasonably carry
out several walks in parallel; for example, taking α = 1/8 will require 64 walks
on average. The most common argument for parallelization is that it allows the
computation to exploit multiple cores, decreasing latency. Parallelization is help-
ful even when latency is not a concern: for example, it allows merging inversions
in affine elliptic-curve computations (Montgomery’s trick), and it often allows
effective use of vector units in a single core. Solving many independent discrete-
logarithm problems produces the same benefits, but requires the application to
have many independent problems ready at the same time.

The obvious disadvantage of taking very small α is that the success probability
per walk drops quadratically with α, while the walk length drops only linearly
with α. In other words, chopping a small α in half makes each step half as
effective, doubling the number of steps expected in the computation. Sometimes
this is outweighed by the increase in parallelization (there are now four times
as many walks), but clearly there is a limit to how small α can reasonably be
taken.

Clearly there is also a limit to how large α can reasonably be taken. Doubling
α beyond 1 does not make each step twice as effective: an α = 1 walk already
succeeds with chance 63%; an α = 2 walk succeeds with chance 98% but is twice
as expensive.

We actually recommend optimizing α experimentally (and not limiting it to
powers of 2), rather than trusting the exact details of the heuristic analysis shown
above. A small issue with the heuristic analysis is that the new walk sometimes
takes only, say, W/2 steps, obtaining collisions with much lower probability than
indicated above, and sometimes 2W steps; the success probability of a walk
is not the same as the success probability of a length-W walk. A larger issue
is that TW is only a crude approximation to the table coverage. Discarding
previously discovered distinguished points when building the table creates a bias
towards short walks, especially for large α; on the other hand, a walk finding
a distinguished point will rarely see all of the ancestors of that point, and in a

10 Daniel J. Bernstein and Tanja Lange

moment we will see that this is a controllable effect, allowing the table coverage
to be significantly increased.

Lee, Cheon, and Hong in [22, Lemma 1 and Theorem 1] give a detailed
heuristic argument that starting M walks in the precomputation will produce
T ≈ M(

√
1 + 2a − 1)/a distinct distinguished points, where a = MW 2/` (so

our α is (
√

1 + 2a − 1)1/2), and that each walk in the main computation then
succeeds with probability 1− 1/

√
1 + 2a (i.e., 1− 1/(α2 + 1)). In [22, page 13]

they recommend taking a = (1 +
√

5)/4 ≈ 0.809 (equivalently, α ≈ 0.786); the
heuristics then state that T ≈ 0.764M and that each walk in the main computa-
tion succeeds with probability 1− 1/

√
1 + 2a ≈ 0.382, so the main computation

uses W/0.382 ≈ 2.058(`/T)1/2 multiplications on average. We issue three cau-
tions regarding this recommendation. First, assuming the same heuristics, it is
actually better to take a = 1.5 (equivalently, α = 1); then the main computa-
tion uses just 2(`/T)1/2 multiplications on average. Second, our improvements
to the table coverage (see below) reduce the number of multiplications, and
this reduction is different for different choices of a (see our experimental results
in Section 4), rendering the detailed optimization in [22] obsolete. Third, even
though we emphasize number of multiplications as a simple algorithm metric,
the real goal is to minimize time; the parallelization issues discussed above seem
to favor considerably smaller choices of α, depending on the platform.

Choosing the most useful distinguished points. Instead of randomly gen-
erating T distinguished points, we propose generating more distinguished points,
say 2T or 10T or 1000T , and then keeping the T most useful distinguished points.

The natural definition of “most useful” is “having the largest number of ances-
tors”. By definition the ancestors of a distinguished point are the group elements
that walk to this point; the chance of a uniform random group element walking
to this point is exactly the number of ancestors divided by `.

Unfortunately, without taking the time to survey all ` group elements, one
does not know the number of ancestors of a distinguished point. Fortunately,
one has a statistical estimate of this number: a distinguished point found by
many walks is very likely to be more useful than a distinguished point found
by fewer walks. This estimate is unreliable for a distinguished point found by
very few walks, especially for distinguished points found by just one walk; we
thus propose using the walk length as a secondary estimate. (In our experiments
we computed a weight for each distinguished point as the total length of all
walks reaching the point, plus 4W per walk; we have not yet experimented with
modifications to this weighting.) This issue disappears as the number of random
walks increases towards larger multiples of T .

This table-generation strategy reduces the number of walks required for the
main discrete-logarithm computation. The table still has size T , and each walk
still has average length W , but the success probability of each walk increases.
The only disadvantage is an increase in the time spent setting up the table.

Interlude: the penalty for iteration functions that depend on h. Escott,
Sager, Selkirk, and Tsapakidis in [9, Section 4.4] chose an iteration function “that
is independent of all the Qis” (the targets hi): namely, a base-g r-adding walk,

Computing small discrete logarithms faster 11

optionally mixed with squarings. Kuhn and Struik in [20] said nothing about
this independence condition; instead they chose a base-(g, hk) r-adding walk. See

[20, Section 2.2] (“gaihbi”) and [20, Section 4] (“all distinguished points gajh
bj
i

that were calculated in order to find xi”). No experiments were reported in [20],
except for a brief comment in [20, Remark 2] that the running-time estimate in
[20, Theorem 1] was “a good approximation of practically observed values”.

Hitchcock, Montague, Carter, and Dawson in [17, page 89] pointed out that
“the particular random walk recommended by Kuhn and Struik”, with the
iteration function used for hk different from the iteration functions used for
h1, . . . , hk−1, fails to detect collisions “from different random walks”. They re-
ported experiments showing that a base-(g, hk) r-adding walk was much less
effective for multiple discrete logarithms than a base-g r-adding walk.

To understand this penalty, consider the probability that the main computa-
tion succeeds with one walk, i.e., that the resulting distinguished point appears
in the table. There are ≈`/W distinguished points, and the table contains T of
those points, so the obvious first approximation is that the main computation
succeeds with probability TW/`. If the table is generated by a random walk
independent of the walk used in the main computation then this approximation
is quite reasonable. If the table was generated by the same walk used in the
main computation then the independence argument no longer applies and the
approximation turns out to be a severe underestimate.

In effect, the table-generation process in [20] selects the table entries uni-
formly at random from the set of distinguished points. The table-generation
process in [9], [17], and [22] instead starts from random group elements and
walks to distinguished points; this produces a highly non-uniform distribution
of distinguished points covered by the table, biasing the table entries towards
more useful distinguished points. We go further, biasing the table entries even
more by selecting them carefully from a larger pool of distinguished points.

Choosing the most useful iteration function. Another useful way to spend
more time on table setup is to try different iteration functions, i.e., different
choices of exponents for the r-adding walk.

The following examples are a small illustration of the impact of varying the
iteration function. Figure 3.1 is a directed graph on 1000 nodes obtained as
follows. Each node marked itself as distinguished with probability 1/W where
W = 10. (We did not enforce exactly 100 distinguished points; each node made
its decision independently.) Each non-distinguished node created an outgoing
edge to a uniform random node. We then used the neato program, part of the
standard graphviz package [14], to draw the digraph with short edges. The
T = 10 most useful distinguished points are black squares; the 593 nontrivial
ancestors of those points are black circles; the other 99 distinguished points are
white squares; the remaining points are white circles.

Figure 3.2 is another directed graph obtained in the same way, with the same
values of W and T but different distinguished points and a different random
walk. For this graph the 10 most useful distinguished points have 687 nontrivial
ancestors, for an overall success probability of 697/1000 ≈ 70%, significantly

12 Daniel J. Bernstein and Tanja Lange

Fig. 3.1. Directed graph on 1000 nodes. Each node chose to be a distinguished point
(square) with probability 10%. Each non-distinguished point created one outgoing edge
to a uniform random node, and was then placed to keep edges short. The 603 ancestors
of the top 10 distinguished points are marked in black.

better than Figure 3.1 and also significantly above the 63% heuristic mentioned
earlier.

These graphs were not selected as outliers; they were the first two graphs we
generated. Evidently the table coverage has rather high variance.

Of course, a larger table coverage by itself does not imply better performance:
graphs with larger coverage tend to have longer walks. We thus use the actual
performance of the resulting discrete-logarithm computations as a figure of merit
for the graph.

Computing small discrete logarithms faster 13

Fig. 3.2. Directed graph on 1000 nodes, generated in the same way as Figure 3.1. The
697 ancestors of the top 10 distinguished points are marked in black.

For small examples it is easy to calculate the exact average-case performance,
rather than just estimate it statistically. Figure 3.2 uses, on average, 10.8506
steps to compute a discrete logarithm if walks are limited to 27 steps. (Here 27
is optimal for that graph. The graph has cycles, so some limit or other cycle-
detection mechanism is required. One can also take this limit into account in de-
ciding which distinguished points are best.) Figure 3.1 uses, on average, 11.2007
steps.

Adapting the method to a small interval. We now explain a small set of
tweaks that adapt the basic algorithm stated above to the problem of computing
discrete logarithms in an interval of length `. These tweaks trivially combine with
the refinements stated above, such as choosing the most useful distinguished
points.

14 Daniel J. Bernstein and Tanja Lange

As in the standard kangaroo method, choose the steps s1, s2, . . . , sr as pow-
ers of g where the exponents are β`/W on average. We recommend numerical
optimization of the constant β.

Start walks at gy for random choices of y in the interval. As in the basic
algorithm, stop each walk when it reaches a distinguished point, and build a
table of discrete logarithms of the resulting distinguished points.

To find the discrete logarithm of h, start a walk at hgy for a random small
integer y; stop at the first distinguished point; and check whether the resulting
distinguished point is in the table. (As in the basic algorithm, there appears to
be little value in checking for collisions between these h-dependent walks.) In
our experiments we defined “small” as “bounded by `/256”, but it would also
have been reasonable to start the first walk at h, the second at hg, the third at
hg2, etc.

We are deviating in several ways here from the typical kangaroo methods
stated in the literature. Our walks starting from gy can be viewed as tame
kangaroos, but our tame kangaroos are spread through the interval rather than
being clustered together. We do not continue walks past distinguished points. We
select the most useful distinguished points experimentally, rather than through
preconceived notions of how far kangaroos should be allowed to jump.

We do not claim that the details of this approach are optimal. However, this
approach has the virtue of being very close to the basic algorithm, and our
experiments so far have found discrete logarithms in intervals of length ` almost
as quickly as discrete logarithms in groups of order `.

4 Experiments

This section reports several experiments with the algorithm described in Sec-
tion 3, both for small groups and for small intervals inside larger groups. To
allow verification of our results we have included, as Appendix A of this paper,
our software for a typical experiment.

Case study: a small-group experiment. We began with several experiments
targeting the discrete-logarithm problem modulo pq described in [15, Table 2,
first line]. Here p and q are “768-bit primes” generated so that p−1 and q−1 are
“248-smooth”; presumably this means that (p − 1)/2 is a product of 16 primes
slightly below 248, and similarly for (q − 1)/2. The original discrete-logarithm
problem then splits into 16 separate 48-bit DLPs modulo p and 16 separate
48-bit DLPs modulo q.

What [15] reports is that a 448-ALU NVIDIA Tesla M2050 graphics card
takes an average of 23 seconds for these 32 discrete-logarithm computations,
i.e., 0.72 seconds for each 48-bit discrete-logarithm computation. The discrete-
logarithm computations in [15] use standard techniques, using more than 224

modular multiplications; the main accomplishment of [15] is at a lower level,
using the graphics card to compute 52 million 768-bit modular multiplications
per second.

Computing small discrete logarithms faster 15

We do not own a Tesla M2050. The card is currently advertised for $1300 but
we have decided not to buy it. Instead we are using a single core of a 6-core
3.3GHz AMD Phenom II X6 1100T CPU. This CPU is no longer available but
it cost only $190 when we purchased it last year.

We generated an integer p as 1+2`1`2 · · · `16, where `1, `2, . . . , `16 are random
primes between 248 − 220 and 248. We repeated this process until p was prime,
and then took ` = `1. This ` turned out to be 248 − 313487. We do not claim
that this narrow range of 48-bit primes is cryptographically secure in the context
of [15]; we stayed very close to 248 to avoid any possibility of our order-` DLP
being noticeably smaller than the DLP in [15]. We chose g as 2(p−1)/` in F∗p.

For modular multiplications we used the standard C++ interface to the well-
known GMP library (version 5.0.2). This interface allows writing readable code
such as

x = (a * b) % p

which turns out to run slightly faster than 1.4 million modular multiplications
per second on our single CPU core for our 769-bit p. This understates GMP’s
internal speeds — it is clear from other benchmarks that we could gain at least
a factor of 2 by precomputing an approximate reciprocal of p— but for our
experiments we decided to use GMP in the most straightforward way.

We selected T = 64 and W = 1048576; here α = 1/2, i.e., W ≈ (1/2)(`/T)1/2.
Precomputing T table entries used a total of 80289876 ≈ 1.20TW ≈ 0.60(`T)1/2

multiplications; evidently some distinguished points were found more than once.
We then carried out a series of 1024 discrete-logarithm experiments, all targeting
the same h. Each experiment chose a random y and started a walk from hgy,
hoping that (1) the walk would reach a distinguished point within 8W steps and
(2) the distinguished point would be in the table. If both conditions were satis-
fied, the experiment double-checked that it had correctly computed the discrete
logarithm of h, and finally declared success.

These experiments used a total of 1040325443 ≈ 0.97 · 1024W multiplications
(not counting the occasional multiplications for the randomization of hgy and
for the double-checks) and succeeded 192 times, on average using 5418361 ≈
2.58(`/T)1/2 multiplications per discrete-logarithm computation. Note that the
randomization of hgy made these speeds independent of h.

More useful distinguished points. We then changed the precomputation,
preserving T = 64 and W = 1048576 but selecting the T table entries as the
most useful 64 table entries from a pool of N = 128 distinguished points. This
increased the precomputation cost to 167040079 ≈ 1.24NW ≈ 1.24(`T)1/2 mul-
tiplications. We ran 4096 new discrete-logarithm experiments, using a total of
3980431381 ≈ 0.93·4096W multiplications and succeeding 1060 times, on average
using 3755123 ≈ 1.79(`/T)1/2 multiplications per discrete-logarithm computa-
tion.

The T 1/2 scaling. We then reduced W to 262144, increased T to 1024, and
increased N to 2048. This increased the precomputation cost to 626755730 ≈
1.17NW ≈ 1.17(`T)1/2 multiplications. We then ran 8192 new experiments,

16 Daniel J. Bernstein and Tanja Lange

T 512 640 768 896 1024

α 0.70711 0.79057 0.86603 0.93541 1.00000

precomputation, N = T 0.84506 0.94916 1.11884 1.23070 1.34187
precomputation, N = 2T 1.89769 2.33819 2.74627 3.27589 3.66113
precomputation, N = 8T 15.7167 20.7087 26.1621 31.2112 36.9350

main computation, N = T 2.13856 2.03391 2.01172 1.98725 2.01289
main computation, N = 2T 1.62474 1.59358 1.58893 1.59218 1.61922
main computation, N = 8T 1.38323 1.40706 1.42941 1.46610 1.49688

Table 4.1. Observed cost for 15 types of discrete-logarithm computations in a group of
order ` ≈ 248. Each discrete-logarithm experiment used T table entries selected from N
distinguished points, and used W = 524288 ≈ α(`/T)1/2. Each “main computation” ta-
ble entry reports, for a series of 220 discrete-logarithm experiments, the average number
of multiplications per successful discrete-logarithm computation, scaled by (`/T)1/2.
Each “precomputation” table entry reports the total number of multiplications to build
the table, scaled by (`T)1/2.

using a total of 2123483139 ≈ 0.99 · 8192W multiplications and succeeding 2265
times, on average using just 937520 ≈ 1.79(`/T)1/2 multiplications per discrete-
logarithm computation.

We also checked that these computations were running at more than 1.4 mil-
lion multiplications per second, i.e., under 0.67 seconds per discrete-logarithm
computation — less real time on a single CPU core than [15] needed on an entire
GPU. There was no noticeable overhead beyond GMP’s modular multiplications.
The precomputation for T = 1024 took several minutes, but this is not a serious
problem for a cryptographic protocol that is going to be run many times.

We then reduced W to 32768, increased T to 65536, and increased N to
131072. This increased the precomputation cost to 5333245354 ≈ 1.24NW ≈
1.24(`T)1/2 multiplications, roughly an hour. We then ran 4194304 experiments,
using a total of 137426510228 ≈ 1.00 · 4194304W multiplications and succeeding
1187484 times, on average using just 115729 ≈ 1.77(`/T)1/2 multiplications per
discrete-logarithm computation — under 0.1 seconds.

Optimizing α. We then carried out a series of experiments with W = 524288,
varying both T and N/T as shown in Table 4.1. Each table entry is rounded to
6 digits. The smallest “main computation” table entry, 1.38314 for T = 512 and
N/T = 8, means (modulo this rounding) that a series of discrete-logarithm ex-
periments used 1.38314(`/T)1/2 multiplications per successful discrete-logarithm
computation. Each table entry involved 220 discrete-logarithm experiments, of
which more than 218 were successful, so each table entry is very likely to have
an experimental error below 0.02.

This table shows that the optimal choice of α depends on the ratio N/T ,
but also that rather large variations in α around the optimum make a relatively
small difference in performance. Performance is much more heavily affected by
increased N/T , i.e., by extra precomputation.

Computing small discrete logarithms faster 17

T 512 640 768 896 1024

α 0.70711 0.79057 0.86603 0.93541 1.00000

precomputation, N = T 0.85702 1.00463 1.14077 1.28112 1.41167
precomputation, N = 2T 1.99640 2.38469 2.81441 3.17253 3.61816
precomputation, N = 8T 15.5307 20.2547 25.2022 30.7112 36.7452

main computation, N = T 2.32320 2.21685 2.14892 2.10155 2.09915
main computation, N = 2T 1.66106 1.64183 1.63488 1.65603 1.66895
main computation, N = 8T 1.44377 1.44808 1.46581 1.49548 1.52502

Table 4.2. Observed cost for 15 types of discrete-logarithm computations in an interval
of length ` = 248 inside a much larger group. Table entries have the same meaning as
in Table 4.1.

To better understand the tradeoffs between precomputation time and main-
computation time, we plotted the 15 pairs of numbers in Table 4.1, obtaining
Figure 4.3. For example, Table 4.1 indicates for T = 512 and N = 2T that
each successful discrete-logarithm computation took 1.62474(`/T)1/2 multipli-
cations on average after 1.89769(`T)1/2 multiplications in the precomputation,
so (1.89769, 1.62474) is one of the points plotted in Figure 4.3. Figure 4.3 suggests
that optimizing α to minimize main-computation time for fixed N/T does not
produce the best tradeoff between main-computation time and precomputation
time; one should instead decrease α somewhat and increase N/T . To verify this
theory we are performing more computations to fill in more points in Figure 4.3.

Small-interval experiments. Starting from the same software, we then made
the following tweaks to compute discrete logarithms in a short interval inside a
much larger prime-order group:

– We replaced p by a “strong” 256-bit prime, i.e., a prime for which (p− 1)/2
is also prime. Of course, 256 bits is not adequate for cryptographic security
for groups of the form F∗p, but it is adequate for these experiments.

– We replaced g by a large square modulo p.
– We replaced ` by exactly 248, and removed the reductions of discrete loga-

rithms modulo `.
– We increased r, the number of precomputed steps, from 32 to 128.
– We generated each step as gy with y chosen uniformly at random between 0

and `/(4W), rather than between 0 and `.
– We started each walk from hgy with y chosen uniformly at random between

0 and `/28, rather than between 0 and `.
– After each successful experiment, we generated a new target h for the fol-

lowing experiments.

For W = 131072, T = 4096, and N = 8192 the precomputation cost was
1337520628 ≈ 1.25NW ≈ 1.25(`T)1/2 multiplications. We ran 4194304 exper-
iments, using a total of 550245759582 ≈ 1.00 · 4194304W multiplications and
succeeding 1097822 times, on average using 501117 ≈ 1.91(`/T)1/2 multiplica-
tions per discrete-logarithm computation.

18 Daniel J. Bernstein and Tanja Lange

1 10

1.3

1.4

1.5

1.6

1.7

1.8

1.9
2.0
2.1
2.2
2.3
2.4
2.5

Fig. 4.3. Observed tradeoffs between precomputation time and main-computation
time in Table 4.1. Horizontal axis is observed average precomputation time, scaled by
(`T)1/2. Vertical axis is observed average main-computation time, scaled by (`/T)1/2.

For W = 32768, T = 65536, and N = 131072 the precomputation cost was
5214755468 ≈ 1.21NW ≈ 1.21(`T)1/2 multiplications. We ran 16777216 exper-
iments, using a total of 548997610777 ≈ 1.00 · 16777216W multiplications and
succeeding 4331750 times, on average using just 126738 ≈ 1.93(`/T)1/2 multi-
plications per discrete-logarithm computation.

Table 4.2 reports the results of experiments for W = 524288 with various
choices of T and N/T , all using the same bounds `/(4W) and `/28 stated above.
Comparing Table 4.2 to Table 4.1 shows that this approach to computing discrete
logarithms in an interval of length ` uses — for the same table size, and essentially
the same amount of precomputation — only slightly more multiplications than
computing discrete logarithms in a group of order `.

5 Space optimization

Each table entry described in Section 3 consists of a group element, at least
lg ` bits, and a discrete logarithm, also lg ` bits, for a total of at least 2T lg `

Computing small discrete logarithms faster 19

bits. This section explains several ways to compress the table to a much smaller
number of bits.

Many of these compression mechanisms slightly increase the number of mul-
tiplications used to compute logg h. This produces a slightly worse tradeoff be-
tween the number of multiplications and the number of table entries, but pro-
duces a much better tradeoff between the number of multiplications and the
number of table bits.

For comparison, [22, Table 2] took T = 586463 and W = 211 for a group of
size ` ≈ 242, and reported about 2(`/T)1/2 multiplications per discrete-logarithm
computation, using 150 megabytes for the table. Previous sections of this paper
explain how to use significantly fewer multiplications for the same T ; this section
reduces the space consumption by two orders of magnitude for the same T , with
only a small increase in the number of multiplications. Equivalently, for the same
number of table bits, we use an order of magnitude fewer multiplications.

Lossless compression of each distinguished point. There are several stan-
dard techniques to reversibly compress elements of commonly used groups. For
example, nonzero elements of the “Curve25519” elliptic-curve group are pairs
(x, y) ∈ Fq × Fq satisfying y2 = x3 + 486662x2 + x; here q = 2255 − 19 and
` ≈ 2252. This pair is trivially compressed to x and a single bit of y, for a total
of 256 ≈ lg ` bits.

A typical distinguished-point definition states that a point is distinguished
if and only if its bottom lgW bits are 0. These lgW bits need not be stored.
This reduces the space for a distinguished elliptic-curve point to approximately
lg(`/W) bits; e.g., (2/3) lg ` bits for W ≈ `1/3.

The other techniques discussed in this section work for any group, not just
an elliptic-curve group.

Replacing each distinguished point with a hash. To do better we sim-
ply suppress some additional bits: we hash each distinguished point to a smaller
number of bits and store the hash instead of the distinguished point. This creates
a risk of false alarms, but the cost of false alarms is merely the cost of checking a
bad guess for logg h. Checking one guess takes only about (1+1/ lg lg `) lg ` mul-
tiplications, and standard multiexponentiation techniques check several guesses
even more efficiently.

If each distinguished point is hashed to lg(T/γ) bits then one expects many
false alarms as γ increases past 1. Specifically, a distinguished point outside the
table has probability γ/T of colliding with any particular table entry (if the
hash behaves randomly), so it is expected to collide with γ table entries overall,
creating γ bad guesses for logg h. For a successful walk, the expected number
of bad guesses drops approximately in half, or slightly below half if the discrete
logarithms with each hash are sorted in decreasing order of utility.

If γ is far below W/ lg ` then the cost of checking γ bad guesses is far below
W multiplications, the average cost of a walk. For example, if T is much smaller
than W then one can afford to hash each distinguished point to 0 bits: the table
then consists simply of T discrete logarithms, occupying T lg ` bits, and one
checks the end of each walk against each table entry.

20 Daniel J. Bernstein and Tanja Lange

Compressing a sorted sequence of hashes. It is well known that a sorted
sequence of n d-bit integers contains far fewer than nd bits of information when
n and d are not very small. “Delta compression” takes advantage of this by
computing differences between successive integers and using a variable-length
encoding of the differences. For random integers the average difference is close
to 2d/n and is encoded as slightly more than d − lg n bits if d ≥ lg n, saving
nearly n lg n bits.

Delta compression does not allow fast random access: to search for an integer
one must read the sequence from the beginning. This is not visible in this paper’s
multiplication counts, but it nevertheless becomes a bottleneck as T grows past
W . We instead use a simpler approach that allows fast random access: namely,
store the sorted sequence x1, x2, . . . , xn of d-bit integers as

– the sorted sequence x1, x2, . . . , xm of (d − 1)-bit integers where m is the
largest index such that xm < 2d−1; and

– the sorted sequence xm+1 − 2d−1, xm+2 − 2d−1, . . . , xn − 2d−1 of (d− 1)-bit
integers.

To search for an integer s we search x1, . . . , xm for s if s < 2d−1 and search
xm+1 − 2d−1, . . . , xn − 2d−1 for s− 2d−1 if s ≥ 2d−1. The second search requires
a pointer to the second sorted sequence, i.e., a count of the number of bits used
to encode x1, x2, . . . , xm.

This transformation saves 1 bit in each of the n table entries at the expense of
a small amount of overhead. This is a sensible transformation if the overhead is
below n bits. The transformation is inapplicable if d = 0; we encode a sequence
of 0-bit integers as simply the number of integers.

Of course, we can and do apply the transformation recursively. The recursion
continues for nearly lg n levels if d ≥ lg n, again saving nearly n lg n bits. For
small d the compressed sequence drops to a fraction of n bits.

For example, if each distinguished point is hashed to d ≈ lg(4T) bits, at the
expense of 1/4 bad guesses for each walk, then the hashes are compressed from
Td ≈ T lg(4T) bits to just a few bits per table entry. If each distinguished point
is hashed to slightly fewer bits, at the expense of more bad guesses for each
walk, then the T hashes are compressed to fewer than T bits; in this case one
should concatenate the hashes with the discrete logarithms before applying this
compression mechanism.

Compressing each discrete logarithm. We finish by considering two mech-
anisms for compressing discrete logarithms in the table. The first mechanism
was introduced in the ongoing ECC2K-130 computation; see [3]. The second
mechanism appears to be new.

The first mechanism is as follows. Instead of choosing a random y and starting
a walk at gy, choose a pseudorandom y determined by a short seed. The seed
is about lg T bits, or slightly more if one tries more than T walks; for example,
the seed is about 3 times shorter than the discrete logarithm if T ≈ `1/3. Store
the seed as a proxy for the discrete logarithm of the resulting distinguished
point. Reconstructing the discrete logarithm then takes about W multiplications

Computing small discrete logarithms faster 21

to recompute the walk starting from gy. This reconstruction is a bottleneck
if distinguished points are hashed to fewer than lg T bits (creating many bad
guesses), and it slows down the main computation by a factor of almost 2 if α
is large, but if distinguished points are hashed to more than lg T bits and α is
small then the reconstruction cost is outweighed by the space savings.

The second mechanism is to simply suppress most of the bits of the discrete
logarithm. Reconstructing those bits is then a discrete-logarithm problem in a
smaller interval; solve these reconstruction problems with the same algorithm
recursively, using a smaller table and a smaller number of multiplications. For
example, communicating just 9 bits of an `-bit discrete logarithm means reducing
an `-bit DLP to an (`− 9)-bit DLP, which takes 1/8th as many multiplications
using a T/8-entry table (or 1/16th as many multiplications using a T/2-entry
table); if the number of bad guesses is sufficiently small then this is a good
tradeoff.

Note that this second mechanism relies on being able to quickly compute
discrete logarithms in small intervals, even if the original goal is to compute
discrete logarithms in small groups.

References

[1] — (no editor), 2nd ACM conference on computer and communication security,
Fairfax, Virginia, November 1994, Association for Computing Machinery, 1994.
See [32].

[2] Mikhail J. Atallah, Nicholas J. Hopper (editors), Privacy enhancing technologies,
10th interational symposium, PETS 2010, Berlin, Germany, July 21–23, 2010,
proceedings, Lecture Notes in Computer Science, 6205, Springer, 2010. ISBN 978-
3-642-14526-1. See [16].

[3] Daniel V. Bailey, Lejla Batina, Daniel J. Bernstein, Peter Birkner, Joppe W.
Bos, Hsieh-Chung Chen, Chen-Mou Cheng, Gauthier Van Damme, Giacomo de
Meulenaer, Luis Julian Dominguez Perez, Junfeng Fan, Tim Güneysu, Frank
Gürkaynak, Thorsten Kleinjung, Tanja Lange, Nele Mentens, Ruben Nieder-
hagen, Christof Paar, Francesco Regazzoni, Peter Schwabe, Leif Uhsadel, An-
thony Van Herrewege, Bo-Yin Yang, Breaking ECC2K-130 (2010). URL: http://
eprint.iacr.org/2009/541/. Citations in this document: §5.

[4] Feng Bao, Pierangela Samarati, Jianying Zhou (editors), Applied cryptography
and network security, 10th international conference, ACNS 2012, Singapore,
June 26–29, 2012, proceedings (industrial track), 2012. URL: http://icsd.i2r.
a-star.edu.sg/acns2012/proceedings-industry.pdf. See [18].

[5] Daniel J. Bernstein, Tanja Lange, Two grumpy giants and a baby, Proceedings of
ANTS 2012, to appear (2012). URL: http://eprint.iacr.org/2012/294. Cita-
tions in this document: §2, §2.

[6] Daniel J. Bernstein, Tanja Lange, Non-uniform cracks in the concrete: the power
of free precomputation (2012). URL: http://eprint.iacr.org/2012/318. Cita-
tions in this document: §1, §1.

[7] Dan Boneh, Eu-Jin Goh, Kobi Nissim, Evaluating 2-DNF formulas on ciphertexts,
in TCC 2005 [19] (2005), 325–341. URL: http://crypto.stanford.edu/~dabo/
abstracts/2dnf.html. Citations in this document: §1, §1, §1.

http://eprint.iacr.org/2009/541/
http://eprint.iacr.org/2009/541/
http://icsd.i2r.a-star.edu.sg/acns2012/proceedings-industry.pdf
http://icsd.i2r.a-star.edu.sg/acns2012/proceedings-industry.pdf
http://eprint.iacr.org/2012/294
http://eprint.iacr.org/2012/318
http://crypto.stanford.edu/~dabo/abstracts/2dnf.html
http://crypto.stanford.edu/~dabo/abstracts/2dnf.html

22 Daniel J. Bernstein and Tanja Lange

[8] Donald W. Davies (editor), Advances in cryptology — EUROCRYPT ’91, work-
shop on the theory and application of cryptographic techniques, Brighton, UK,
April 8–11, 1991, proceedings, Lecture Notes in Computer Science, 547, Springer,
1991. See [24].

[9] Adrian E. Escott, John C. Sager, Alexander P. L. Selkirk, Dimitrios Tsapakidis,
Attacking elliptic curve cryptosystems using the parallel Pollard rho method, Cryp-
toBytes 4 (1999). URL: ftp://ftp.rsa.com/pub/cryptobytes/crypto4n2.pdf.
Citations in this document: §1, §1, §3, §3.

[10] Simone Fischer-Hübner, Nicholas Hopper (editors), Privacy enhancing
technologies — 11th international symposium, PETS 2011, Waterloo, ON,
Canada, July 27–29, 2011, proceedings, Lecture Notes in Computer Science,
6794, Springer, 2011. See [21].

[11] David Mandell Freeman, Converting pairing-based cryptosystems from composite-
order groups to prime-order groups, in Eurocrypt 2010 [12] (2010), 44–61. URL:
http://theory.stanford.edu/~dfreeman/papers/subgroups.pdf. Citations in
this document: §1.

[12] Henri Gilbert (editor), Advances in cryptology — EUROCRYPT 2010, 29th an-
nual international conference on the theory and applications of cryptographic tech-
niques, French Riviera, May 30–June 3, 2010, proceedings, Lecture Notes in Com-
puter Science, 6110, Springer, 2010. See [11].

[13] Walter Fumy (editor), Advances in cryptology — EUROCRYPT ’97, international
conference on the theory and application of cryptographic techniques, Konstanz,
Germany, May 11–15, 1997, Lecture Notes in Computer Science, 1233, Springer,
1997. See [31].

[14] Emden R. Gansner, Stephen C. North, An open graph visualization system and
its applications to software engineering, Software: Practice and Experience 30
(2000), 1203–1233. Citations in this document: §3.

[15] Ryan Henry, Ian Goldberg, Solving discrete logarithms in smooth-order groups
with CUDA, in Workshop Record of SHARCS 2012: Special-purpose Hardware for
Attacking Cryptographic Systems (2012), 101–118. URL: http://2012.sharcs.
org/record.pdf. Citations in this document: §1, §1, §1, §4, §4, §4, §4, §4, §4, §4.

[16] Ryan Henry, Kevin Henry, Ian Goldberg, Making a nymbler Nymble using
VERBS, in PETS 2010 [2] (2010), 111–129. URL: http://www.cypherpunks.

ca/~iang/pubs/nymbler-pets.pdf. Citations in this document: §1.
[17] Yvonne Hitchcock, Paul Montague, Gary Carter, Ed Dawson, The efficiency of

solving multiple discrete logarithm problems and the implications for the security
of fixed elliptic curves, International Journal of Information Security 3 (2004),
86–98. Citations in this document: §1, §3, §3.

[18] Yin Hu, William J. Martin, Berk Sunar, Enhanced flexibility for homomorphic
encryption schemes via CRT, in ACNS 2012 industrial track [4] (2012), 93–110.
Citations in this document: §1, §1.

[19] Joe Kilian (editor), Theory of cryptography, second theory of cryptography con-
ference, TCC 2005, Cambridge, MA, USA, February 10–12, 2005, proceedings,
Lecture Notes in Computer Science, 3378, Springer, 2005. ISBN 3-540-24573-1.
See [7].

[20] Fabian Kuhn, Rene Struik, Random walks revisited: extensions of Pollard’s rho al-
gorithm for computing multiple discrete logarithms, in SAC 2001 [35] (2001), 212–
229. URL: http://www.distcomp.ethz.ch/publications.html. Citations in this
document: §1, §1, §1, §1, §3, §3, §3, §3, §3, §3, §3.

ftp://ftp.rsa.com/pub/cryptobytes/crypto4n2.pdf
http://theory.stanford.edu/~dfreeman/papers/subgroups.pdf
http://2012.sharcs.org/record.pdf
http://2012.sharcs.org/record.pdf
http://www.cypherpunks.ca/~iang/pubs/nymbler-pets.pdf
http://www.cypherpunks.ca/~iang/pubs/nymbler-pets.pdf
http://www.distcomp.ethz.ch/publications.html

Computing small discrete logarithms faster 23

[21] Klaus Kursawe, George Danezis, Markulf Kohlweiss, Privacy-friendly aggregation
for the smart-grid, in PETS 2011 [10] (2011), 175–191. URL: http://research.
microsoft.com/pubs/146092/main.pdf. Citations in this document: §1.

[22] Hyung Tae Lee, Jung Hee Cheon, Jin Hong, Accelerating ID-based encryption
based on trapdoor DL using pre-computation, 11 Jan 2012 (2012). URL: http://
eprint.iacr.org/2011/187. Citations in this document: §1, §1, §3, §3, §3, §3, §5.

[23] Donald J. Lewis (editor), 1969 Number Theory Institute: proceedings of the 1969
summer institute on number theory: analytic number theory, Diophantine prob-
lems, and algebraic number theory; held at the State University of New York at
Stony Brook, Stony Brook, Long Island, New York, July 7–August 1, 1969, Pro-
ceedings of Symposia in Pure Mathematics, 20, American Mathematical Society,
Providence, Rhode Island, 1971. ISBN 0-8218-1420-6. MR 47:3286. See [30].

[24] Ueli M. Maurer, Yacov Yacobi, Non-interactive public-key cryptography, in Euro-
crypt 1991 [8] (1991), 498–507. Citations in this document: §1, §1.

[25] Vasilĭı I. Nechaev, Complexity of a determinate algorithm for the discrete loga-
rithm, Mathematical Notes 55 (1994), 165–172. Citations in this document: §2.

[26] Kenneth G. Paterson, Sriramkrishnan Srinivasan, On the relations between non-
interactive key distribution, identity-based encryption and trapdoor discrete log
groups, Designs, Codes and Cryptography 52 (2009), 219–241. URL: http://

www.isg.rhul.ac.uk/~prai175/PatersonS09.pdf. Citations in this document:
§1.

[27] John M. Pollard, Monte Carlo methods for index computation (mod p), Mathe-
matics of Computation 32 (1978), 918–924. URL: http://www.ams.org/mcom/

1978-32-143/S0025-5718-1978-0491431-9/S0025-5718-1978-0491431-9.pdf.
Citations in this document: §2, §2, §2.

[28] John M. Pollard, Kangaroos, Monopoly and discrete logarithms, Journal of Cryp-
tology 13 (2000), 437–447. Citations in this document: §2.

[29] Jürgen Sattler, Claus-Peter Schnorr, Generating random walks in groups, Annales
Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae. Sectio
Computatorica 6 (1989), 65–79. ISSN 0138-9491. MR 89a:68108. URL: http://
ac.inf.elte.hu/Vol_006_1985/065.pdf. Citations in this document: §2.

[30] Daniel Shanks, Class number, a theory of factorization, and genera, in [23] (1971),
415–440. MR 47:4932. Citations in this document: §2, §2.

[31] Victor Shoup, Lower bounds for discrete logarithms and related problems, in Eu-
rocrypt 1997 [13] (1997), 256–266. URL: http://www.shoup.net/papers/. Cita-
tions in this document: §2.

[32] Paul C. van Oorschot, Michael Wiener, Parallel collision search with application
to hash functions and discrete logarithms, in [1] (1994), 210–218; see also newer
version [33].

[33] Paul C. van Oorschot, Michael Wiener, Parallel collision search with cryptanalytic
applications, Journal of Cryptology 12 (1999), 1–28; see also older version [32].
ISSN 0933–2790. URL: http://members.rogers.com/paulv/papers/pubs.html.
Citations in this document: §2, §2, §2.

[34] Edlyn Teske, On random walks for Pollard’s rho method, Mathematics of
Computation 70 (2001), 809–825. URL: http://www.ams.org/journals/mcom/
2001-70-234/S0025-5718-00-01213-8/S0025-5718-00-01213-8.pdf. Citations
in this document: §2.

[35] Serge Vaudenay, Amr M. Youssef (editors), Selected areas in cryptography: 8th
annual international workshop, SAC 2001, Toronto, Ontario, Canada, August
16–17, 2001, revised papers, Lecture Notes in Computer Science, 2259, Springer,
2001. ISBN 3-540-43066-0. MR 2004k:94066. See [20].

http://research.microsoft.com/pubs/146092/main.pdf
http://research.microsoft.com/pubs/146092/main.pdf
http://eprint.iacr.org/2011/187
http://eprint.iacr.org/2011/187
http://www.isg.rhul.ac.uk/~prai175/PatersonS09.pdf
http://www.isg.rhul.ac.uk/~prai175/PatersonS09.pdf
http://www.ams.org/mcom/1978-32-143/S0025-5718-1978-0491431-9/S0025-5718-1978-0491431-9.pdf
http://www.ams.org/mcom/1978-32-143/S0025-5718-1978-0491431-9/S0025-5718-1978-0491431-9.pdf
http://ac.inf.elte.hu/Vol_006_1985/065.pdf
http://ac.inf.elte.hu/Vol_006_1985/065.pdf
http://www.shoup.net/papers/
http://members.rogers.com/paulv/papers/pubs.html
http://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01213-8/S0025-5718-00-01213-8.pdf
http://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01213-8/S0025-5718-00-01213-8.pdf

24 Daniel J. Bernstein and Tanja Lange

A Appendix: Software

#include <algorithm>

#include <iostream>

#include <gmpxx.h>

#include <math.h>

using std::cout;

using std::flush;

using std::sort;

using std::lower_bound;

#define R 128 // must be a power of 2

#define W 524288 // must be a power of 2

#define T 896

#define N 7168

struct tableentry { mpz_class x; mpz_class log; long long weight; };

tableentry table[N]; // of which T will be used in main computation

bool tablesort(tableentry i,tableentry j)

{

return i.weight > j.weight; // move higher weights earlier

}

bool tablesort2(tableentry i,tableentry j)

{

return i.x < j.x; // move smaller points earlier

}

mpz_class l("281474976710656");

mpz_class p

("109058979322431746959182812013517394520037958891193115336877067190430268203759");

mpz_class power(const mpz_class &g,const mpz_class &e)

{

mpz_class result;

mpz_powm(result.get_mpz_t(),g.get_mpz_t(),e.get_mpz_t(),p.get_mpz_t());

return result;

}

int hash(const mpz_class &w)

{

return w.get_si() & (R-1);

}

int distinguished(const mpz_class &w)

{

return !(w.get_si() & (W-1));

}

int main()

Computing small discrete logarithms faster 25

{

gmp_randclass ra(gmp_randinit_default);

mpz_class g = p / l; g = (g * g) % p;

mpz_class s[R];

mpz_class slog[R];

for (int i = 0;i < R;++i) slog[i] = ra.get_z_bits(46) / W;

for (int i = 0;i < R;++i) s[i] = power(g,slog[i]);

long long totalnumsteps = 0;

long long numsteps = 0;

int tabledone = 0;

while (tabledone < N) {

mpz_class wlog = ra.get_z_bits(48);

mpz_class w = power(g,wlog);

for (int loop = 0;loop < 8*W;++loop) {

if (distinguished(w)) {

int i;

for (i = 0;i < tabledone;++i) if (table[i].x == w) break;

if (i < tabledone) {

table[i].weight += 4*W + numsteps;

} else {

table[tabledone].x = w;

table[tabledone].log = wlog;

table[tabledone].weight = 4*W + numsteps;

++tabledone;

}

numsteps = 0;

break;

}

int h = hash(w);

wlog = wlog + slog[h];

w = (w * s[h]) % p;

++numsteps;

++totalnumsteps;

}

}

sort(table,table + N,tablesort);

sort(table,table + T,tablesort2);

cout << "alpha = " << W / sqrt(float(l.get_ui())/T) << "\n";

cout << "r = " << R << "\n";

cout << "W = " << W << "\n";

cout << "T = " << T << "\n";

cout << "N = " << N << "\n";

cout << totalnumsteps << " precomputation steps; ";

cout << totalnumsteps / sqrt(float(l.get_ui())*T) << "\n";

26 Daniel J. Bernstein and Tanja Lange

totalnumsteps = 0;

mpz_class hlog = ra.get_z_bits(48);

mpz_class h = power(g,hlog);

long long numsuccesses = 0;

long long experiments = 0;

for (;;) {

numsteps = 0;

mpz_class wdist = ra.get_z_bits(40);

mpz_class w = (h * power(g,wdist)) % p;

for (int loop = 0;loop < 8*W;++loop) {

if (distinguished(w)) {

tableentry desired;

desired.x = w;

tableentry *position = lower_bound(table,table + T,desired,tablesort2);

if (position < table + T)

if (position->x == w) {

wdist = position->log - wdist;

}

break;

}

int h = hash(w);

wdist = wdist + slog[h];

w = (w * s[h]) % p;

++numsteps;

++totalnumsteps;

}

if (power(g,wdist) == h) {

++numsuccesses;

hlog = ra.get_z_bits(48);

h = power(g,hlog);

}

++experiments;

if (numsuccesses > 0 && !(experiments & (experiments - 1))) {

cout << experiments << " experiments, "

<< totalnumsteps << " steps, "

<< numsuccesses << " successes, "

<< totalnumsteps/numsuccesses << " steps/success; "

<< (totalnumsteps/numsuccesses) / sqrt(float(l.get_ui())/T) << "\n";

cout << flush;

}

}

return 0;

}

