37 research outputs found
A multicentre validation of Metasin: a molecular assay for the intraoperative assessment of sentinel lymph nodes from breast cancer patients
Aims:
Treatment strategies for breast cancer continue to evolve. No uniformity exists in the UK for the management of node‐positive breast cancer patients. Most centres continue to use conventional histopathology of sampled sentinel lymph nodes (SLNs), which requires delayed axillary clearance in up to 25% of patients. Some use touch imprint cytology or frozen section for intraoperative testing, although both have inherent sensitivity issues. An intraoperative molecular diagnostic approach helps to overcome some of these limitations. The aim of this study was to assess the clinical effectiveness of Metasin, a molecular method for the intraoperative evaluation of SLNs.
Methods and results:
RNA from 3296 lymph nodes from 1836 patients undergoing SLN assessment was analysed with Metasin. Alternate slices of tissue were examined in parallel by histology. Cases deemed to be discordant were analysed by protein gel electrophoresis. There was concordance between Metasin and histology in 94.1% of cases, with a sensitivity of 92% [95% confidence interval (CI) 88–94%] and a specificity of 97% (95% CI 95–97%). Positive and negative predictive values were 88% and 98%, respectively. Over half of the discordant cases (4.4%) were ascribed to tissue allocation bias (TAB).
Conclusions:
Clinical validation of the Metasin assay suggests that it is sufficiently sensitive and specific to make it fit for purpose in the intraoperative setting
A genome-wide association study of anorexia nervosa.
Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome-wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2907 cases with AN from 14 countries (15 sites) and 14 860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery data sets. Seventy-six (72 independent) single nucleotide polymorphisms were taken forward for in silico (two data sets) or de novo (13 data sets) replication genotyping in 2677 independent AN cases and 8629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication data sets comprised 5551 AN cases and 21 080 controls. AN subtype analyses (1606 AN restricting; 1445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01 × 10(-7)) in SOX2OT and rs17030795 (P=5.84 × 10(-6)) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76 × 10(-)(6)) between CUL3 and FAM124B and rs1886797 (P=8.05 × 10(-)(6)) near SPATA13. Comparing discovery with replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4 × 10(-6)), strongly suggesting that true findings exist but our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field
Common Genetic Variation And Age at Onset Of Anorexia Nervosa
Background Genetics and biology may influence the age at onset of anorexia nervosa (AN). The aims of this study were to determine whether common genetic variation contributes to AN age at onset and to investigate the genetic associations between age at onset of AN and age at menarche. Methods A secondary analysis of the Psychiatric Genomics Consortium genome-wide association study (GWAS) of AN was performed which included 9,335 cases and 31,981 screened controls, all from European ancestries. We conducted GWASs of age at onset, early-onset AN (< 13 years), and typical-onset AN, and genetic correlation, genetic risk score, and Mendelian randomization analyses. Results Two loci were genome-wide significant in the typical-onset AN GWAS. Heritability estimates (SNP-h2) were 0.01-0.04 for age at onset, 0.16-0.25 for early-onset AN, and 0.17-0.25 for typical-onset AN. Early- and typical-onset AN showed distinct genetic correlation patterns with putative risk factors for AN. Specifically, early-onset AN was significantly genetically correlated with younger age at menarche, and typical-onset AN was significantly negatively genetically correlated with anthropometric traits. Genetic risk scores for age at onset and early-onset AN estimated from independent GWASs significantly predicted age at onset. Mendelian randomization analysis suggested a causal link between younger age at menarche and early-onset AN. Conclusions Our results provide evidence consistent with a common variant genetic basis for age at onset and implicate biological pathways regulating menarche and reproduction.Peer reviewe
Shared genetic risk between eating disorder- and substance-use-related phenotypes:Evidence from genome-wide association studies
First published: 16 February 202
Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders
Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe
Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors
Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe
Characterization of Enhancer Function from Genome-Wide Analyses
There has been a recent surge in the use of genome-wide methodologies to identify and annotate the transcriptional regulatory elements in the human genome. Here we review some of these methodologies and the conceptual insights about transcription regulation that have been gained from the use of genome-wide studies. It has become clear that the binding of transcription factors is itself a highly regulated process, and binding does not always appear to have functional consequences. Numerous properties have now been associated with regulatory elements that may be useful in their identification. Several aspects of enhancer function have been shown to be more widespread than was previously appreciated, including the highly combinatorial nature of transcription factor binding, the postinitiation regulation of many target genes, and the binding of enhancers at early stages to maintain their competence during development. Going forward, the integration of multiple genome-wide data sets should become a standard approach to elucidate higher-order regulatory interactions
CrfA, a Small Noncoding RNA Regulator of Adaptation to Carbon Starvation in Caulobacter crescentus▿ †
Small noncoding regulatory RNAs (sRNAs) play a key role in the posttranscriptional regulation of many bacterial genes. The genome of Caulobacter crescentus encodes at least 31 sRNAs, and 27 of these sRNAs are of unknown function. An overexpression screen for sRNA-induced growth inhibition along with sequence conservation in a related Caulobacter species led to the identification of a novel sRNA, CrfA, that is specifically induced upon carbon starvation. Twenty-seven genes were found to be strongly activated by CrfA accumulation. One-third of these target genes encode putative TonB-dependent receptors, suggesting CrfA plays a role in the surface modification of C. crescentus, facilitating the uptake of nutrients during periods of carbon starvation. The mechanism of CrfA-mediated gene activation was investigated for one of the genes predicted to encode a TonB-dependent receptor, CC3461. CrfA functions to stabilize the CC3461 transcript. Complementarity between a region of CrfA and the terminal region of the CC3461 5′-untranslated region (5′-UTR) and also the behavior of a deletion of this region and a site-specific base substitution and a 3-base deletion in the CrfA complementary sequence suggest that CrfA binds to a stem-loop structure upstream of the CC3461 Shine-Dalgarno sequence and stabilizes the transcript
A Cell-Based Method for Screening RNA-Protein Interactions: Identification of Constitutive Transport Element-Interacting Proteins
<div><p>We have developed a mammalian cell-based screening platform to identify proteins that assemble into RNA-protein complexes. Based on Tat-mediated activation of the HIV LTR, proteins that interact with an RNA target elicit expression of a GFP reporter and are captured by fluorescence activated cell sorting. This “Tat-hybrid” screening platform was used to identify proteins that interact with the Mason Pfizer monkey virus (MPMV) constitutive transport element (CTE), a structured RNA hairpin that mediates the transport of unspliced viral mRNAs from the nucleus to the cytoplasm. Several hnRNP-like proteins, including hnRNP A1, were identified and shown to interact with the CTE with selectivity in the reporter system comparable to Tap, a known CTE-binding protein. <em>In vitro</em> gel shift and pull-down assays showed that hnRNP A1 is able to form a complex with the CTE and Tap and that the RGG domain of hnRNP A1 mediates binding to Tap. These results suggest that hnRNP-like proteins may be part of larger export-competent RNA-protein complexes and that the RGG domains of these proteins play an important role in directing these binding events. The results also demonstrate the utility of the screening platform for identifying and characterizing new components of RNA-protein complexes.</p> </div