126 research outputs found

    Status of the 24Mg( alpha , gamma ) 28Si reaction rate at stellar temperatures

    Get PDF
    International audienceBackground: The Mg24(α,γ)Si28 reaction influences the production of magnesium and silicon isotopes during carbon burning and is one of eight reaction rates found to significantly impact the shape of calculated x-ray burst light curves. The reaction rate is based on measured resonance strengths and known properties of levels in Si28. Purpose: It is necessary to update the astrophysical reaction rate for Mg24(α,γ)Si28 incorporating recent modifications to the nuclear level data for Si28, and to determine if any additional as-yet unobserved resonances could contribute to the Mg24(α,γ)Si28 reaction rate. Methods: The reaction rate has been recalculated incorporating updated level assignments from Si28(α,α′)Si28 data using the ratesmc Monte Carlo code. Evidence from the Si28(p,p′)Si28 reaction suggests that there are no further known resonances which could increase the reaction rate at astrophysically important temperatures, though some resonances do not yet have measured resonance strengths. Results: The reaction rate is substantially unchanged from previously calculated rates, especially at astrophysically important temperatures. However, the reaction rate is now constrained to better than 20% across the astrophysically relevant energy range, with 95% confidence. Calculations of the x-ray burst light curve show no appreciable variations when varying the reaction rate within the uncertainty from the Monte Carlo calculations. Conclusion: The Mg24(α,γ)Si28 reaction rate, at temperatures relevant to carbon burning and Type I x-ray bursts, is well constrained by the available experimental data. This removes one reaction from the list of eight previously found to cause variations in x-ray burst light-curve calculations

    Evaluation of the 13N(α,p)16O thermonuclear reaction rate and its impact on the isotopic composition of supernova grains

    Get PDF
    It has been suggested that hydrogen ingestion into the helium shell of massive stars could lead to high 13^{13}C and 15^{15}N excesses when the shock of a core-collapse supernova passes through its helium shell. This prediction questions the origin of extremely high 13^{13}C and 15^{15}N abundances observed in rare presolar SiC grains which is usually attributed to classical novae. In this context 13^{13}N(α\alpha,p)16^{16}O the reaction plays an important role since it is in competition with 13^{13}N β+\beta^+-decay to 13^{13}C. The 13^{13}N(α\alpha,p)16^{16}O reaction rate used in stellar evolution calculations comes from the CF88 compilation with very scarce information on the origin of this rate. The goal of this work is to provide a recommended 13^{13}N(α\alpha,p)16^{16}O reaction rate, based on available experimental data. Unbound nuclear states in the 17^{17}F compound nucleus were studied using the spectroscopic information of the analog states in 17^{17}O nucleus that were measured at the Alto facility using the 13^{13}C(7^7Li,t)17^{17}O alpha-transfer reaction, and spectroscopic factors were derived using a DWBA analysis. This spectroscopic information was used to calculate a recommended 13^{13}N(α\alpha,p)16^{16}O reaction rate with meaningful uncertainty using a Monte Carlo approach. The present 13^{13}N(α\alpha,p)16^{16}O reaction rate is found to be within a factor of two of the previous evaluation, with a typical uncertainty of a factor 2-3. The source of this uncertainty comes from the three resonances at Erc.m.=221E_r^{c.m.} = 221, 741 and 959 keV. This new error estimation translates to an overall uncertainty in the 13^{13}C production of a factor of 50. The main source of uncertainty on the re-evaluated 13^{13}N(α\alpha,p)16^{16}O reaction rate currently comes from the uncertain alpha-width of relevant 17^{17}F states

    Penilaian Kinerja Keuangan Koperasi di Kabupaten Pelalawan

    Full text link
    This paper describe development and financial performance of cooperative in District Pelalawan among 2007 - 2008. Studies on primary and secondary cooperative in 12 sub-districts. Method in this stady use performance measuring of productivity, efficiency, growth, liquidity, and solvability of cooperative. Productivity of cooperative in Pelalawan was highly but efficiency still low. Profit and income were highly, even liquidity of cooperative very high, and solvability was good

    Severe early onset preeclampsia: short and long term clinical, psychosocial and biochemical aspects

    Get PDF
    Preeclampsia is a pregnancy specific disorder commonly defined as de novo hypertension and proteinuria after 20 weeks gestational age. It occurs in approximately 3-5% of pregnancies and it is still a major cause of both foetal and maternal morbidity and mortality worldwide1. As extensive research has not yet elucidated the aetiology of preeclampsia, there are no rational preventive or therapeutic interventions available. The only rational treatment is delivery, which benefits the mother but is not in the interest of the foetus, if remote from term. Early onset preeclampsia (<32 weeks’ gestational age) occurs in less than 1% of pregnancies. It is, however often associated with maternal morbidity as the risk of progression to severe maternal disease is inversely related with gestational age at onset2. Resulting prematurity is therefore the main cause of neonatal mortality and morbidity in patients with severe preeclampsia3. Although the discussion is ongoing, perinatal survival is suggested to be increased in patients with preterm preeclampsia by expectant, non-interventional management. This temporising treatment option to lengthen pregnancy includes the use of antihypertensive medication to control hypertension, magnesium sulphate to prevent eclampsia and corticosteroids to enhance foetal lung maturity4. With optimal maternal haemodynamic status and reassuring foetal condition this results on average in an extension of 2 weeks. Prolongation of these pregnancies is a great challenge for clinicians to balance between potential maternal risks on one the eve hand and possible foetal benefits on the other. Clinical controversies regarding prolongation of preterm preeclamptic pregnancies still exist – also taking into account that preeclampsia is the leading cause of maternal mortality in the Netherlands5 - a debate which is even more pronounced in very preterm pregnancies with questionable foetal viability6-9. Do maternal risks of prolongation of these very early pregnancies outweigh the chances of neonatal survival? Counselling of women with very early onset preeclampsia not only comprises of knowledge of the outcome of those particular pregnancies, but also knowledge of outcomes of future pregnancies of these women is of major clinical importance. This thesis opens with a review of the literature on identifiable risk factors of preeclampsia

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Measurement of associated W plus charm production in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    stairs and fire

    Get PDF

    Search for pair production of excited top quarks in the lepton+jets final state

    Get PDF

    Progress on nuclear reaction rates affecting the stellar production of 26Al

    Get PDF
    The radioisotope 26Al is a key observable for nucleosynthesis in the Galaxy and the environment of the early Solar System. To properly interpret the large variety of astronomical and meteoritic data, it is crucial to understand both the nuclear reactions involved in the production of 26Al in the relevant stellar sites and the physics of such sites. These range from the winds of low- and intermediate-mass asymptotic giant branch (AGB) stars; to massive and very massive stars, both their Wolf-Rayet (WR) winds and their final core-collapse supernovae (CCSN); and the ejecta from novae, the explosions that occur on the surface of a white dwarf accreting material from a stellar companion. Several reactions affect the production of 26Al in these astrophysical objects, including (but not limited to) 25Mg(p,γ)26Al, 26Al(p,γ)27Si, and 26Al(n,p/α). Extensive experimental effort has been spent during recent years to improve our understanding of such key reactions. Here we present a summary of the astrophysical motivation for the study of 26Al, a review of its production in the different stellar sites, and a timely evaluation of the currently available nuclear data. We also provide recommendations for the nuclear input into stellar models and suggest relevant, future experimental work.peerReviewe
    corecore