39 research outputs found

    Griseofulvin stabilizes microtubule dynamics, activates p53 and inhibits the proliferation of MCF-7 cells synergistically with vinblastine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Griseofulvin, an antifungal drug, has recently been shown to inhibit proliferation of various types of cancer cells and to inhibit tumor growth in athymic mice. Due to its low toxicity, griseofulvin has drawn considerable attention for its potential use in cancer chemotherapy. This work aims to understand how griseofulvin suppresses microtubule dynamics in living cells and sought to elucidate the antimitotic and antiproliferative action of the drug.</p> <p>Methods</p> <p>The effects of griseofulvin on the dynamics of individual microtubules in live MCF-7 cells were measured by confocal microscopy. Immunofluorescence microscopy, western blotting and flow cytometry were used to analyze the effects of griseofulvin on spindle microtubule organization, cell cycle progression and apoptosis. Further, interactions of purified tubulin with griseofulvin were studied <it>in vitro </it>by spectrophotometry and spectrofluorimetry. Docking analysis was performed using autodock4 and LigandFit module of Discovery Studio 2.1.</p> <p>Results</p> <p>Griseofulvin strongly suppressed the dynamic instability of individual microtubules in live MCF-7 cells by reducing the rate and extent of the growing and shortening phases. At or near half-maximal proliferation inhibitory concentration, griseofulvin dampened the dynamicity of microtubules in MCF-7 cells without significantly disrupting the microtubule network. Griseofulvin-induced mitotic arrest was associated with several mitotic abnormalities like misaligned chromosomes, multipolar spindles, misegregated chromosomes resulting in cells containing fragmented nuclei. These fragmented nuclei were found to contain increased concentration of p53. Using both computational and experimental approaches, we provided evidence suggesting that griseofulvin binds to tubulin in two different sites; one site overlaps with the paclitaxel binding site while the second site is located at the αβ intra-dimer interface. In combination studies, griseofulvin and vinblastine were found to exert synergistic effects against MCF-7 cell proliferation.</p> <p>Conclusions</p> <p>The study provided evidence suggesting that griseofulvin shares its binding site in tubulin with paclitaxel and kinetically suppresses microtubule dynamics in a similar manner. The results revealed the antimitotic mechanism of action of griseofulvin and provided evidence suggesting that griseofulvin alone and/or in combination with vinblastine may have promising role in breast cancer chemotherapy.</p

    Efficiency of Organelle Capture by Microtubules as a Function of Centrosome Nucleation Capacity: General Theory and the Special Case of Polyspermia

    Get PDF
    Transport of organelles along microtubules is essential for the cell metabolism and morphogenesis. The presented analysis derives the probability that an organelle of a given size comes in contact with the microtubule aster. The question is asked how this measure of functionality of the microtubule aster is controlled by the centrosome. A quantitative model is developed to address this question. It is shown that for the given set of cellular parameters, such as size and total tubulin content, a centrosome nucleation capacity exists that maximizes the probability of the organelle capture. The developed general model is then applied to the capture of the female pronucleus by microtubules assembled on the sperm centrosome, following physiologically polyspermic fertilization. This application highlights an unintuitive reflection of nonlinearity of the nucleated polymerization of the cellular pool of tubulin. The prediction that the sperm centrosome should lower its nucleation capacity in the face of the competition from the other sperm is a stark illustration of the new optimality principle. Overall, the model calls attention to the capabilities of the centrosomal pathway of regulation of the transport-related functionality of the microtubule cytoskeleton. It establishes a quantitative and conceptual framework that can guide experiment design and interpretation

    Molecular Characterization, Tissue Distribution, Subcellular Localization and Actin-Sequestering Function of a Thymosin Protein from Silkworm

    Get PDF
    We identified a novel gene encoding a Bombyx mori thymosin (BmTHY) protein from a cDNA library of silkworm pupae, which has an open reading frame (ORF) of 399 bp encoding 132 amino acids. It was found by bioinformatics that BmTHY gene consisted of three exons and two introns and BmTHY was highly homologous to thymosin betas (Tβ). BmTHY has a conserved motif LKHTET with only one amino acid difference from LKKTET, which is involved in Tβ binding to actin. A His-tagged BmTHY fusion protein (rBmTHY) with a molecular weight of approximately 18.4 kDa was expressed and purified to homogeneity. The purified fusion protein was used to produce anti-rBmTHY polyclonal antibodies in a New Zealand rabbit. Subcellular localization revealed that BmTHY can be found in both Bm5 cell (a silkworm ovary cell line) nucleus and cytoplasm but is primarily located in the nucleus. Western blotting and real-time RT-PCR showed that during silkworm developmental stages, BmTHY expression levels are highest in moth, followed by instar larvae, and are lowest in pupa and egg. BmTHY mRNA was universally distributed in most of fifth-instar larvae tissues (except testis). However, BmTHY was expressed in the head, ovary and epidermis during the larvae stage. BmTHY formed complexes with actin monomer, inhibited actin polymerization and cross-linked to actin. All the results indicated BmTHY might be an actin-sequestering protein and participate in silkworm development

    Conformational Dynamics of Actin: Effectors and Implications for Biological Function

    Get PDF
    Actin is a protein abundant in many cell types. Decades of investigations have provided evidence that it has many functions in living cells. The diverse morphology and dynamics of actin structures adapted to versatile cellular functions is established by a large repertoire of actin-binding proteins. The proper interactions with these proteins assume effective molecular adaptations from actin, in which its conformational transitions play essential role. This review attempts to summarise our current knowledge regarding the coupling between the conformational states of actin and its biological function
    corecore