1,743 research outputs found
Effect of acute physiological free fatty acid elevation in the context of hyperinsulinemia on fiber type-specific IMCL accumulation.
It is well described that increasing free fatty acids (FFAs) to high physiological levels reduces insulin sensitivity. In sedentary humans, intramyocellular lipid (IMCL) is inversely related to insulin sensitivity. Since muscle fiber composition affects muscle metabolism, whether FFAs induce IMCL accumulation in a fiber type-specific manner remains unknown. We hypothesized that in the setting of acute FFA elevation by lipid infusion within the context of a hyperinsulinemic-euglycemic clamp, IMCL will preferentially accumulate in type 1 fibers. Normal-weight participants (n = 57, mean ± SE: age 24 ± 0.6 yr, BMI 22.2 ± 0.3 kg/m(2)) who were either endurance trained or sedentary by self-report were recruited from the University of Minnesota (n = 31, n = 15 trained) and University of Pittsburgh (n = 26, n = 14 trained). All participants underwent a hyperinsulinemic-euglycemic clamp in the context of a 6-h infusion of either lipid or glycerol control. A vastus lateralis muscle biopsy was obtained at baseline and end-infusion (6 h). The muscle biopsies were processed and analyzed at the University of Pittsburgh for fiber type-specific IMCL accumulation by Oil-Red-O staining. Regardless of training status, acute elevation of FFAs to high physiological levels (~400-600 meq/l) increased IMCL preferentially in type 1 fibers (+35 ± 11% compared with baseline, +29 ± 11% compared with glycerol control: P < 0.05). The increase in IMCL correlated with a decline in insulin sensitivity as measured by the hyperinsulinemic-euglycemic clamp (r = -0.32, P < 0.01) independent of training status. Regardless of training status, increase of FFAs to a physiological range within the context of hyperinsulinemia shows preferential IMCL accumulation in type 1 fibers.NEW & NOTEWORTHY This novel human study examined the effects of FFA elevation in the setting of hyperinsulinemia on accumulation of fat in specific types of muscle fibers. Within the context of the hyperinsulinemic-euglycemic clamp, we found that an increase of FFAs to a physiological range sufficient to reduce insulin sensitivity is associated with preferential IMCL accumulation in type 1 fibers
Preparation and Measurement of Three-Qubit Entanglement in a Superconducting Circuit
Traditionally, quantum entanglement has played a central role in foundational
discussions of quantum mechanics. The measurement of correlations between
entangled particles can exhibit results at odds with classical behavior. These
discrepancies increase exponentially with the number of entangled particles.
When entanglement is extended from just two quantum bits (qubits) to three, the
incompatibilities between classical and quantum correlation properties can
change from a violation of inequalities involving statistical averages to sign
differences in deterministic observations. With the ample confirmation of
quantum mechanical predictions by experiments, entanglement has evolved from a
philosophical conundrum to a key resource for quantum-based technologies, like
quantum cryptography and computation. In particular, maximal entanglement of
more than two qubits is crucial to the implementation of quantum error
correction protocols. While entanglement of up to 3, 5, and 8 qubits has been
demonstrated among spins, photons, and ions, respectively, entanglement in
engineered solid-state systems has been limited to two qubits. Here, we
demonstrate three-qubit entanglement in a superconducting circuit, creating
Greenberger-Horne-Zeilinger (GHZ) states with fidelity of 88%, measured with
quantum state tomography. Several entanglement witnesses show violation of
bi-separable bounds by 830\pm80%. Our entangling sequence realizes the first
step of basic quantum error correction, namely the encoding of a logical qubit
into a manifold of GHZ-like states using a repetition code. The integration of
encoding, decoding and error-correcting steps in a feedback loop will be the
next milestone for quantum computing with integrated circuits.Comment: 7 pages, 4 figures, and Supplementary Information (4 figures)
Pain outcomes in patients with bone metastases from advanced cancer: assessment and management with bone-targeting agents
Bone metastases in advanced cancer frequently cause painful complications that impair patient physical activity and negatively affect quality of life. Pain is often underreported and poorly managed in these patients. The most commonly used pain assessment instruments are visual analogue scales, a single-item measure, and the Brief Pain Inventory Questionnaire-Short Form. The World Health Organization analgesic ladder and the Analgesic Quantification Algorithm are used to evaluate analgesic use. Bone-targeting agents, such as denosumab or bisphosphonates, prevent skeletal complications (i.e., radiation to bone, pathologic fractures, surgery to bone, and spinal cord compression) and can also improve pain outcomes in patients with metastatic bone disease. We have reviewed pain outcomes and analgesic use and reported pain data from an integrated analysis of randomized controlled studies of denosumab versus the bisphosphonate zoledronic acid (ZA) in patients with bone metastases from advanced solid tumors. Intravenous bisphosphonates improved pain outcomes in patients with bone metastases from solid tumors. Compared with ZA, denosumab further prevented pain worsening and delayed the need for treatment with strong opioids. In patients with no or mild pain at baseline, denosumab reduced the risk of increasing pain severity and delayed pain worsening along with the time to increased pain interference compared with ZA, suggesting that use of denosumab (with appropriate calcium and vitamin D supplementation) before patients develop bone pain may improve outcomes. These data also support the use of validated pain assessments to optimize treatment and reduce the burden of pain associated with metastatic bone disease
Terahertz Security Image Quality Assessment by No-reference Model Observers
To provide the possibility of developing objective image quality assessment
(IQA) algorithms for THz security images, we constructed the THz security image
database (THSID) including a total of 181 THz security images with the
resolution of 127*380. The main distortion types in THz security images were
first analyzed for the design of subjective evaluation criteria to acquire the
mean opinion scores. Subsequently, the existing no-reference IQA algorithms,
which were 5 opinion-aware approaches viz., NFERM, GMLF, DIIVINE, BRISQUE and
BLIINDS2, and 8 opinion-unaware approaches viz., QAC, SISBLIM, NIQE, FISBLIM,
CPBD, S3 and Fish_bb, were executed for the evaluation of the THz security
image quality. The statistical results demonstrated the superiority of Fish_bb
over the other testing IQA approaches for assessing the THz image quality with
PLCC (SROCC) values of 0.8925 (-0.8706), and with RMSE value of 0.3993. The
linear regression analysis and Bland-Altman plot further verified that the
Fish__bb could substitute for the subjective IQA. Nonetheless, for the
classification of THz security images, we tended to use S3 as a criterion for
ranking THz security image grades because of the relatively low false positive
rate in classifying bad THz image quality into acceptable category (24.69%).
Interestingly, due to the specific property of THz image, the average pixel
intensity gave the best performance than the above complicated IQA algorithms,
with the PLCC, SROCC and RMSE of 0.9001, -0.8800 and 0.3857, respectively. This
study will help the users such as researchers or security staffs to obtain the
THz security images of good quality. Currently, our research group is
attempting to make this research more comprehensive.Comment: 13 pages, 8 figures, 4 table
Pain and analgesic use associated with skeletal-related events in patients with advanced cancer and bone metastases
PURPOSE: Bone metastases secondary to solid tumors increase the risk of skeletal-related events (SREs), including the occurrence of pathological fracture (PF), radiation to bone (RB), surgery to bone (SB), and spinal cord compression (SCC). The aim of this study was to evaluate the impact of SREs on patients' pain, analgesic use, and pain interference with daily functioning.
METHODS: Data were combined from patients with solid tumors and bone metastases who received denosumab or zoledronic acid across three identically designed phase 3 trials (N = 5543). Pain severity (worst pain) and pain interference were assessed using the Brief Pain Inventory at baseline and each monthly visit. Analgesic use was quantified using the Analgesic Quantification Algorithm.
RESULTS: The proportion of patients with moderate/severe pain and strong opioid use generally increased in the 6 months preceding an SRE and remained elevated, while they remained relatively consistent over time in patients without an SRE. Regression analysis indicated that all SRE types were significantly associated with an increased risk of progression to moderate/severe pain and strong opioid use. PF, RB, and SCC were associated with significantly greater risk of pain interference overall. Results were similar for pain interference with emotional well-being. All SRE types were associated with significantly greater risk of pain interference with physical function.
CONCLUSIONS: SREs are associated with increased pain and analgesic use in patients with bone metastases. Treatments that prevent SREs may decrease pain and the need for opioid analgesics and reduce the impact of pain on daily functioning
The what and where of adding channel noise to the Hodgkin-Huxley equations
One of the most celebrated successes in computational biology is the
Hodgkin-Huxley framework for modeling electrically active cells. This
framework, expressed through a set of differential equations, synthesizes the
impact of ionic currents on a cell's voltage -- and the highly nonlinear impact
of that voltage back on the currents themselves -- into the rapid push and pull
of the action potential. Latter studies confirmed that these cellular dynamics
are orchestrated by individual ion channels, whose conformational changes
regulate the conductance of each ionic current. Thus, kinetic equations
familiar from physical chemistry are the natural setting for describing
conductances; for small-to-moderate numbers of channels, these will predict
fluctuations in conductances and stochasticity in the resulting action
potentials. At first glance, the kinetic equations provide a far more complex
(and higher-dimensional) description than the original Hodgkin-Huxley
equations. This has prompted more than a decade of efforts to capture channel
fluctuations with noise terms added to the Hodgkin-Huxley equations. Many of
these approaches, while intuitively appealing, produce quantitative errors when
compared to kinetic equations; others, as only very recently demonstrated, are
both accurate and relatively simple. We review what works, what doesn't, and
why, seeking to build a bridge to well-established results for the
deterministic Hodgkin-Huxley equations. As such, we hope that this review will
speed emerging studies of how channel noise modulates electrophysiological
dynamics and function. We supply user-friendly Matlab simulation code of these
stochastic versions of the Hodgkin-Huxley equations on the ModelDB website
(accession number 138950) and
http://www.amath.washington.edu/~etsb/tutorials.html.Comment: 14 pages, 3 figures, review articl
Malignancy risk analysis in patients with inadequate fine needle aspiration cytology (FNAC) of the thyroid
Background
Thyroid fine needle aspiration cytology (FNAC) is the standard diagnostic modality for thyroid nodules. However, it has limitations among which is the incidence of non-diagnostic results (Thy1). Management of cases with repeatedly non-diagnostic FNAC ranges from simple observation to surgical intervention. We aim to evaluate the incidence of malignancy in non-diagnostic FNAC, and the success rate of repeated FNAC. We also aim to evaluate risk factors for malignancy in patients with non-diagnostic FNAC.
Materials and Methods
Retrospective analyses of consecutive cases with thyroid non diagnostic FNAC results were included.
Results
Out of total 1657 thyroid FNAC done during the study period, there were 264 (15.9%) non-diagnostic FNAC on the first attempt. On repeating those, the rate of a non-diagnostic result on second FNAC was 61.8% and on third FNAC was 47.2%. The overall malignancy rate in Thy1 FNAC was 4.5% (42% papillary, 42% follicular and 8% anaplastic), and the yield of malignancy decreased considerably with successive non-diagnostic FNAC. Ultrasound guidance by an experienced head neck radiologist produced the lowest non-diagnostic rate (38%) on repetition compared to US guidance by a generalist radiologist (65%) and by non US guidance (90%).
Conclusions
There is a low risk of malignancy in patients with a non-diagnostic FNAC result, commensurate to the risk of any nodule. The yield of malignancy decreased considerably with successive non-diagnostic FNAC
Determining the neurotransmitter concentration profile at active synapses
Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission
Pain and analgesic use associated with skeletal-related events in patients with advanced cancer and bone metastases
PURPOSE: Bone metastases secondary to solid tumors increase the risk of skeletal-related events (SREs), including the occurrence of pathological fracture (PF), radiation to bone (RB), surgery to bone (SB), and spinal cord compression (SCC). The aim of this study was to evaluate the impact of SREs on patients' pain, analgesic use, and pain interference with daily functioning.
METHODS: Data were combined from patients with solid tumors and bone metastases who received denosumab or zoledronic acid across three identically designed phase 3 trials (N = 5543). Pain severity (worst pain) and pain interference were assessed using the Brief Pain Inventory at baseline and each monthly visit. Analgesic use was quantified using the Analgesic Quantification Algorithm.
RESULTS: The proportion of patients with moderate/severe pain and strong opioid use generally increased in the 6 months preceding an SRE and remained elevated, while they remained relatively consistent over time in patients without an SRE. Regression analysis indicated that all SRE types were significantly associated with an increased risk of progression to moderate/severe pain and strong opioid use. PF, RB, and SCC were associated with significantly greater risk of pain interference overall. Results were similar for pain interference with emotional well-being. All SRE types were associated with significantly greater risk of pain interference with physical function.
CONCLUSIONS: SREs are associated with increased pain and analgesic use in patients with bone metastases. Treatments that prevent SREs may decrease pain and the need for opioid analgesics and reduce the impact of pain on daily functioning
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
- …
