10 research outputs found

    Enhanced penetration into 3D cell culture using two and three layered gold nanoparticles

    No full text
    Christopher G England,1 Thomas Priest,2 Guandong Zhang,2 Xinghua Sun,2 Dhruvinkumar N Patel,2 Lacey R McNally,3,4 Victor van Berkel,4,5 André M Gobin,2 Hermann B Frieboes1,2,41Department of Pharmacology and Toxicology, 2Department of Bioengineering, 3Department of Medicine, 4James Graham Brown Cancer Center, 5Department of Surgery, University of Louisville, KY, USAAbstract: Nano-scale particles sized 10–400 nm administered systemically preferentially extravasate from tumor vasculature due to the enhanced permeability and retention effect. Therapeutic success remains elusive, however, because of inhomogeneous particle distribution within tumor tissue. Insufficient tumor vascularization limits particle transport and also results in avascular hypoxic regions with non-proliferating cells, which can regenerate tissue after nanoparticle-delivered cytotoxicity or thermal ablation. Nanoparticle surface modifications provide for increasing tumor targeting and uptake while decreasing immunogenicity and toxicity. Herein, we created novel two layer gold-nanoshell particles coated with alkanethiol and phosphatidylcholine, and three layer nanoshells additionally coated with high-density-lipoprotein. We hypothesize that these particles have enhanced penetration into 3-dimensional cell cultures modeling avascular tissue when compared to standard poly(ethylene glycol) (PEG)-coated nanoshells. Particle uptake and distribution in liver, lung, and pancreatic tumor cell cultures were evaluated using silver-enhancement staining and hyperspectral imaging with dark field microscopy. Two layer nanoshells exhibited significantly higher uptake compared to PEGylated nanoshells. This multilayer formulation may help overcome transport barriers presented by tumor vasculature, and could be further investigated in vivo as a platform for targeted cancer therapies.Keywords: cancer nanotherapy, tumor hypoxia, nanovector transpor

    Die Pharmakologie der Haut

    No full text

    Konstitution

    No full text

    Pox-Virus-Krankheiten

    No full text

    Multi-target analysis of neoplasms for the evaluation of tumor progression: stochastic approach of biologic processes

    No full text

    Neurodermitis constitutionalis sive atopica

    No full text
    corecore