198 research outputs found

    Search for contact interactions and large extra dimensions in the dilepton mass spectra from proton-proton collisions at root s=13 TeV

    Get PDF
    A search for nonresonant excesses in the invariant mass spectra of electron and muon pairs is presented. The analysis is based on data from proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the CMS experiment in 2016, corresponding to a total integrated luminosity of 36 fb(-1). No significant deviation from the standard model is observed. Limits are set at 95% confidence level on energy scales for two general classes of nonresonant models. For a class of fermion contact interaction models, lower limits ranging from 20 to 32 TeV are set on the characteristic compositeness scale . For the Arkani-Hamed, Dimopoulos, and Dvali model of large extra dimensions, the first results in the dilepton final state at 13 TeV are reported, and values of the ultraviolet cutoff parameter (T) below 6.9 TeV are excluded. A combination with recent CMS diphoton results improves this exclusion to (T) below 7.7 TeV, providing the most sensitive limits to date in nonhadronic final states.Peer reviewe

    Measurement of the top quark mass in the all- jets final state at root s=13 TeV and combination with the lepton plus jets channel

    Get PDF
    A top quark mass measurement is performed using 35.9 fb - 1 of LHC proton- proton collision data collected with the CMS detector at v s = 13 TeV. The measurement uses the tt all- jets final state. A kinematic fit is performed to reconstruct the decay of the tt system and suppress themultijet background. Using the ideogram method, the top quark mass ( mt) is determined, simultaneously constraining an additional jet energy scale factor ( JSF). The resulting value of mt = 172.34 +/- 0.20 ( stat+ JSF) +/- 0.70 ( syst) GeV is in good agreement with previous measurements. In addition, a combined measurement that uses the tt lepton+ jets and all- jets final states is presented, using the same mass extraction method, and provides an mt measurement of 172.26 +/- 0.07 ( stat+ JSF) +/- 0.61 ( syst) GeV. This is the first combined mt extraction from the lepton+ jets and all- jets channels through a single likelihood function.Peer reviewe

    Observation of Two Excited B-c(+) States and Measurement of the B-c(+) (2S) Mass in pp Collisions at root s=13 TeV

    Get PDF
    Signals consistent with the B-c(+)(2S) and B-c*(+)(2S) states are observed in proton-proton collisions at root s = 13 TeV, in an event sample corresponding to an integrated luminosity of 143 fb(-1), collected by the CMS experiment during the 2015-2018 LHC running periods. These excited (b) over barc states are observed in the B-c(+)pi(+)pi(-) invariant mass spectrum, with the ground state B-c(+) reconstructed through its decay to J/psi pi(+). The two states are reconstructed as two well-resolved peaks, separated in mass by 29.1 +/- 1.5(stat) +/- 0.7(syst) MeV. The observation of two peaks, rather than one, is established with a significance exceeding five standard deviations. The mass of the B-c(+)(2S) meson is measured to be 6871.0 +/- 1.2(stat) +/- 0.8(syst) +/- 0.8(B-c(+)) MeV, where the last term corresponds to the uncertainty in the world-average B-c(+) mass.Peer reviewe

    Observation of Two Excited B⁺c_{c} States and Measurement of the B⁺c_{c}(2S) Mass in pp Collisions at √s = 13 TeV

    Get PDF

    Search for long-lived particles decaying into displaced jets in proton-proton collisions at root s=13 TeV

    Get PDF
    A search for long-lived particles decaying into jets is presented. Data were collected with the CMS detector at the LHC from proton-proton collisions at a center-of-mass energy of 13 TeV in 2016, corresponding to an integrated luminosity of 35.9 fb−1. The search examines the distinctive topology of displaced tracks and secondary vertices. The selected events are found to be consistent with standard model predictions. For a simplified model in which long-lived neutral particles are pair produced and decay to two jets, pair production cross sections larger than 0.2 fb are excluded at 95% confidence level for a long-lived particle mass larger than 1000 GeV and proper decay lengths between 3 and 130 mm. Several supersymmetry models with gauge-mediated supersymmetry breaking or R-parity violation, where pair-produced long-lived gluinos or top squarks decay to several final-state topologies containing displaced jets, are also tested. For these models, in the mass ranges above 200 GeV, gluino masses up to 2300-2400 GeV and top squark masses up to 1350-1600 GeV are excluded for proper decay lengths approximately between 10 and 100 mm. These are the most restrictive limits to date on these models.Peer reviewe

    Inclusive search for supersymmetry in pp collisions at root s=13 TeV using razor variables and boosted object identification in zero and one lepton final states

    Get PDF
    A search has been performed for heavy resonances decaying to ZZ or ZW in 2l2q final states, with two charged leptons (l = e, mu) produced by the decay of a Z boson, and two quarks produced by the decay of a W or Z boson. The analysis is sensitive to resonances with masses in the range from 400 to 4500 GeV. Two categories are defined based on the merged or resolved reconstruction of the hadronically decaying vector boson, optimized for high- and low-mass resonances, respectively. The search is based on data collected during 2016 by the CMS experiment at the LHC in proton-proton collisions with a center-of-mass energy of root s = 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1). No excess is observed in the data above the standard model background expectation. Upper limits on the production cross section of heavy, narrow spin-1 and spin-2 resonances are derived as a function of the resonance mass, and exclusion limits on the production of W' bosons and bulk graviton particles are calculated in the framework of the heavy vector triplet model and warped extra dimensions, respectively.A search has been performed for heavy resonances decaying to ZZ or ZW in 2l2q final states, with two charged leptons (l = e, mu) produced by the decay of a Z boson, and two quarks produced by the decay of a W or Z boson. The analysis is sensitive to resonances with masses in the range from 400 to 4500 GeV. Two categories are defined based on the merged or resolved reconstruction of the hadronically decaying vector boson, optimized for high- and low-mass resonances, respectively. The search is based on data collected during 2016 by the CMS experiment at the LHC in proton-proton collisions with a center-of-mass energy of root s = 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1). No excess is observed in the data above the standard model background expectation. Upper limits on the production cross section of heavy, narrow spin-1 and spin-2 resonances are derived as a function of the resonance mass, and exclusion limits on the production of W' bosons and bulk graviton particles are calculated in the framework of the heavy vector triplet model and warped extra dimensions, respectively.An inclusive search for supersymmetry (SUSY) using the razor variables is performed using a data sample of proton-proton collisions corresponding to an integrated luminosity of 35.9 fb(-1), collected with the CMS experiment in 2016 at a center-of-mass energy of =13 TeV. The search looks for an excess of events with large transverse energy, large jet multiplicity, and large missing transverse momentum. The razor kinematic variables are sensitive to large mass differences between the parent particle and the invisible particles of a decay chain and help to identify the presence of SUSY particles. The search covers final states with zero or one charged lepton and features event categories divided according to the presence of a high transverse momentum hadronically decaying W boson or top quark, the number of jets, the number of b-tagged jets, and the values of the razor kinematic variables, in order to separate signal from background for a broad range of SUSY signatures. The addition of the boosted W boson and top quark categories within the analysis further increases the sensitivity of the search, particularly to signal models with large mass splitting between the produced gluino or squark and the lightest SUSY particle. The analysis is interpreted using simplified models of R-parity conserving SUSY, focusing on gluino pair production and top squark pair production. Limits on the gluino mass extend to 2.0 TeV, while limits on top squark mass reach 1.14 TeV.Peer reviewe
    corecore