180 research outputs found

    New mechanism for Notch signaling to endothelium at a distance by Delta-like 4 incorporation into exosomes.

    Get PDF
    Notch signaling is an evolutionary conserved pathway that is mediated by cell-cell contact. It is involved in a variety of developmental processes and has an essential role in vascular development and angiogenesis. Delta-like 4 (Dll4) is a Notch ligand that is up-regulated during angiogenesis. It is expressed in endothelial cells and regulates the differentiation between tip cells and stalk cells of neovasculature. Here, we present evidence that Dll4 is incorporated into endothelial exosomes. It can also be incorporated into the exosomes of tumor cells that overexpress Dll4. These exosomes can transfer the Dll4 protein to other endothelial cells and incorporate it into their cell membrane, which results in an inhibition of Notch signaling and a loss of Notch receptor. Transfer of Dll4 was also shown in vivo from tumor cells to host endothelium. Addition of Dll4 exosomes confers a tip cell phenotype on the endothelial cell, which results in a high Dll4/Notch-receptor ratio, low Notch signaling, and filopodia formation. This was further evidenced by increased branching in a tube-formation assay and in vivo. This reversal in phenotype appears to enhance vessel formation and is a new form of signaling for Notch ligands that expands their signaling potential beyond cell-cell contact

    High-throughput analysis and functional interpretation of extracellular vesicle content in hematological malignancies

    Get PDF
    Extracellular vesicles (EVs) are membrane-coated particles secreted by virtually all cell types in response to different stimuli, both in physiological and pathological conditions. Their content generally reflects their biological functions and includes a variety of molecules, such as nucleic acids, proteins and cellular components. The role of EVs as signaling vehicles has been widely demonstrated. In particular, they are actively involved in the pathogenesis of several hematological malignancies (HM), mainly interacting with a number of target cells and inducing functional and epigenetic changes. In this regard, by releasing their cargo, EVs play a pivotal role in the bilateral cross-talk between tumor microenvironment and cancer cells, thus facilitating mechanisms of immune escape and supporting tumor growth and progression. Recent advances in high-throughput technologies have allowed the deep characterization and functional interpretation of EV content. In this review, the current knowledge on the high-throughput technology-based characterization of EV cargo in HM is summarized

    Fish consumption and the risk of gastric cancer: systematic review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gastric cancer is the fourth most frequently occurring malignancy after lung, breast, and colorectal cancer, and the second most common cause of death from cancer worldwide. Epidemiologic studies have examined the possible association between fish consumption and gastric cancer, but the results were inconclusive. We conducted a systematic review and meta-analysis to examine the association between fish intake and the risk of gastric cancer.</p> <p>Methods</p> <p>PubMed was searched for studies published in English-language journals from 1991 through 2009. We identified 17 epidemiologic studies (15 case-control and 2 cohort studies) that included relative risks (RRs) or odds ratios (ORs) estimates with 95% confidence intervals (CIs) of the relationship between gastric cancer and fish consumption. Data were extracted using standardized data forms. Summary RRs or ORs for the highest versus non/lowest fish consumption levels were calculated using random-effects model. Heterogeneity among studies was examined using Q and I<sup>2 </sup>statistics.</p> <p>Results</p> <p>In this study, 5,323 cases of gastric cancer and over 130,000 non-cases were included. The combined results from all studies indicated that the association between high fish consumption and reduced gastric cancer risk was not statistically insignificant (RR = 0.87, 95% CI = 0.71-1.07).</p> <p>Conclusions</p> <p>Current evidence indicated that the association between fish consumption and risk of gastric cancer remains unclear.</p

    Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles

    Get PDF
    Release of membrane vesicles, a process conserved in both prokaryotes and eukaryotes, represents an evolutionary link, and suggests essential functions of a dynamic extracellular vesicular compartment (including exosomes, microparticles or microvesicles and apoptotic bodies). Compelling evidence supports the significance of this compartment in a broad range of physiological and pathological processes. However, classification of membrane vesicles, protocols of their isolation and detection, molecular details of vesicular release, clearance and biological functions are still under intense investigation. Here, we give a comprehensive overview of extracellular vesicles. After discussing the technical pitfalls and potential artifacts of the rapidly emerging field, we compare results from meta-analyses of published proteomic studies on membrane vesicles. We also summarize clinical implications of membrane vesicles. Lessons from this compartment challenge current paradigms concerning the mechanisms of intercellular communication and immune regulation. Furthermore, its clinical implementation may open new perspectives in translational medicine both in diagnostics and therapy

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    Current concepts and future of noninvasive procedures for diagnosing oral squamous cell carcinoma - a systematic review

    Get PDF

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Hypoxic enhancement of exosome release by breast cancer cells

    Get PDF
    This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedBackground Exosomes are nanovesicles secreted by tumour cells which have roles in paracrine signalling during tumour progression, including tumour-stromal interactions, activation of proliferative pathways and bestowing immunosuppression. Hypoxia is an important feature of solid tumours which promotes tumour progression, angiogenesis and metastasis, potentially through exosome-mediated signalling. Methods Breast cancer cell lines were cultured under either moderate (1% O2) or severe (0.1% O2) hypoxia. Exosomes were isolated from conditioned media and quantitated by nanoparticle tracking analysis (NTA) and immunoblotting for the exosomal protein CD63 in order to assess the impact of hypoxia on exosome release. Hypoxic exosome fractions were assayed for miR-210 by real-time reverse transcription polymerase chain reaction and normalised to exogenous and endogenous control genes. Statistical significance was determined using the Student T test with a P value of < 0.05 considered significant. Results Exposure of three different breast cancer cell lines to moderate (1% O2) and severe (0.1% O2) hypoxia resulted in significant increases in the number of exosomes present in the conditioned media as determined by NTA and CD63 immunoblotting. Activation of hypoxic signalling by dimethyloxalylglycine, a hypoxia-inducible factor (HIF) hydroxylase inhibitor, resulted in significant increase in exosome release. Transfection of cells with HIF-1α siRNA prior to hypoxic exposure prevented the enhancement of exosome release by hypoxia. The hypoxically regulated miR-210 was identified to be present at elevated levels in hypoxic exosome fractions. Conclusions These data provide evidence that hypoxia promotes the release of exosomes by breast cancer cells, and that this hypoxic response may be mediated by HIF-1α. Given an emerging role for tumour cell-derived exosomes in tumour progression, this has significant implications for understanding the hypoxic tumour phenotype, whereby hypoxic cancer cells may release more exosomes into their microenvironment to promote their own survival and invasion.HK was recipient of a Flinders University Unibooks Honours Scholarship and the work was funded by the Flinders Medical Centre Research Foundation, the Lyn Wrigley Breast Cancer Research and Development Fund, and the Flinders Medical Centre Clinicians Special Purpose Fund
    corecore