591 research outputs found

    Enhancing Specific Disruption of Intracellular Protein Complexes by Hydrocarbon Stapled Peptides Using Lipid Based Delivery

    Get PDF
    Linear peptides can mimic and disrupt protein-protein interactions involved in critical cell signaling pathways. Such peptides however are usually protease sensitive and unable to engage with intracellular targets due to lack of membrane permeability. Peptide stapling has been proposed to circumvent these limitations but recent data has suggested that this method does not universally solve the problem of cell entry and can lead to molecules with off target cell lytic properties. To address these issues a library of stapled peptides was synthesized and screened to identify compounds that bound Mdm2 and activated cellular p53. A lead peptide was identified that activated intracellular p53 with negligible nonspecific cytotoxicity, however it still bound serum avidly and only showed a marginal improvement in cellular potency. These hurdles were overcome by successfully identifying a pyridinium-based cationic lipid formulation, which significantly improved the activity of the stapled peptide in a p53 reporter cell line, principally through increased vesicular escape. These studies under score that stapled peptides, which are cell permeable and target specific, can be identified with rigorous experimental design and that these properties can be improved through use with lipid based formulations. This work should facilitate the clinical translation of stapled peptides

    Oyster Reefs as Natural Breakwaters Mitigate Shoreline Loss and Facilitate Fisheries

    Get PDF
    Shorelines at the interface of marine, estuarine and terrestrial biomes are among the most degraded and threatened habitats in the coastal zone because of their sensitivity to sea level rise, storms and increased human utilization. Previous efforts to protect shorelines have largely involved constructing bulkheads and seawalls which can detrimentally affect nearshore habitats. Recently, efforts have shifted towards “living shoreline” approaches that include biogenic breakwater reefs. Our study experimentally tested the efficacy of breakwater reefs constructed of oyster shell for protecting eroding coastal shorelines and their effect on nearshore fish and shellfish communities. Along two different stretches of eroding shoreline, we created replicated pairs of subtidal breakwater reefs and established unaltered reference areas as controls. At both sites we measured shoreline and bathymetric change and quantified oyster recruitment, fish and mobile macro-invertebrate abundances. Breakwater reef treatments mitigated shoreline retreat by more than 40% at one site, but overall vegetation retreat and erosion rates were high across all treatments and at both sites. Oyster settlement and subsequent survival were observed at both sites, with mean adult densities reaching more than eighty oysters m−2 at one site. We found the corridor between intertidal marsh and oyster reef breakwaters supported higher abundances and different communities of fishes than control plots without oyster reef habitat. Among the fishes and mobile invertebrates that appeared to be strongly enhanced were several economically-important species. Blue crabs (Callinectes sapidus) were the most clearly enhanced (+297%) by the presence of breakwater reefs, while red drum (Sciaenops ocellatus) (+108%), spotted seatrout (Cynoscion nebulosus) (+88%) and flounder (Paralichthys sp.) (+79%) also benefited. Although the vertical relief of the breakwater reefs was reduced over the course of our study and this compromised the shoreline protection capacity, the observed habitat value demonstrates ecological justification for future, more robust shoreline protection projects

    Atomistic spin model simulations of magnetic nanomaterials

    Get PDF
    Atomistic modelling of magnetic materials provides unprecedented detail about the underlying physical processes that govern their macroscopic properties, and allows the simulation of complex effects such as surface anisotropy, ultrafast laser-induced spin dynamics, exchange bias, and microstructural effects. Here we present the key methods used in atomistic spin models which are then applied to a range of magnetic problems. We detail the parallelization strategies used which enable the routine simulation of extended systems with full atomistic resolution

    Peer substance use overestimation among French university students: a cross-sectional survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Normative misperceptions have been widely documented for alcohol use among U.S. college students. There is less research on other substances or European cultural contexts. This study explores which factors are associated with alcohol, tobacco and cannabis use misperceptions among French college students, focusing on substance use.</p> <p>Methods</p> <p>12 classes of second-year college students (n = 731) in sociology, medicine, nursing or foreign language estimated the proportion of tobacco, cannabis, alcohol use and heavy episodic drinking among their peers and reported their own use.</p> <p>Results</p> <p>Peer substance use overestimation frequency was 84% for tobacco, 55% for cannabis, 37% for alcohol and 56% for heavy episodic drinking. Cannabis users (p = 0.006), alcohol (p = 0.003) and heavy episodic drinkers (p = 0.002), are more likely to overestimate the prevalence of use of these consumptions. Tobacco users are less likely to overestimate peer prevalence of smoking (p = 0.044). Women are more likely to overestimate tobacco (p < 0.001) and heavy episodic drinking (p = 0.007) prevalence. Students having already completed another substance use questionnaire were more likely to overestimate alcohol use prevalence (p = 0.012). Students exposed to cannabis prevention campaigns were more likely to overestimate cannabis (p = 0.018) and tobacco use (p = 0.022) prevalence. Other identified factors are class-level use prevalences and academic discipline.</p> <p>Conclusions</p> <p>Local interventions that focus on creating realistic perceptions of substance use prevalence could be considered for cannabis and alcohol prevention in French campuses.</p

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    The clinical relevance of PCL index on the reconstruction of anterior cruciate ligament with hamstring tendon autograft

    Get PDF
    The posterior cruciate ligament index (PCL index) has been reported as a diagnostic and prognostic marker for anterior cruciate ligament (ACL) reconstruction. The clinical relevance of PCL index on the reconstruction of ACL with hamstring tendon autograft has not been described in the literature. The objective of this study is to evaluate the importance of the PCL index as a marker of anatomic reconstruction and of functional improvement of patients undergoing ACL reconstruction with HT autograft. Twenty-four patients were submitted to ACL reconstruction with HT autograft. The PCL index was assessed by magnetic resonance imaging before and after surgery. The functional evaluation was performed through the International Knee Documentation Committee (IKDC) Subjective Knee Evaluation Form© and Knee Society Knee Scoring System© (IKS). Patients presented a significant positive variation of the PCL index, IKDC and IKS scores. There is no significant correlation between PCL index variation and IKDC and IKS scores (p > 0.05). Unlike other studies reporting a relationship between the PCL index, control of rotational kinematics, and functional improvement in patients undergoing ACL reconstruction with bone-patellar tendon-bone autograft, this study does not demonstrate this association. There is evidence in this study to show that the PCL index may be used as an anatomic reconstructive marker of ACL but not to predict the clinical outcome in this type of reconstruction.(undefined

    [Plasma 2020 Decadal] The essential role of multi-point measurements in turbulence investigations: the solar wind beyond single scale and beyond the Taylor Hypothesis

    Get PDF
    This paper briefly reviews a number of fundamental measurements that need to be made in order to characterize turbulence in space plasmas such as the solar wind. It has long been known that many of these quantities require simultaneous multipoint measurements to attain a proper characterization that would reveal the fundamental physics of plasma turbulence. The solar wind is an ideal plasma for such an investigation, and it now appears to be technologically feasible to carry out such an investigation, following the pioneering Cluster and MMS missions. Quantities that need to be measured using multipoint measurements include the two-point, two-time second correlation function of velocity, magnetic field and density, and higher order statistical objects such as third and fourth order structure functions. Some details of these requirements are given here, with a eye towards achieving closure on fundamental questions regarding the cascade rate, spectral anisotropy, characteristic coherent structures, intermittency, and dissipation mechanisms that describe plasma turbuelence, as well as its variability with plasma parameters in the solar wind. The motivation for this discussion is the current planning for a proposed Helioswarm mission that would be designed to make these measurements,leading to breakthrough understanding of the physics of space and astrophysical turbulence
    corecore