600 research outputs found
A conserved BDNF, glutamate- and GABA-enriched gene module related to human depression identified by coexpression meta-analysis and DNA variant genome-wide association studies
Large scale gene expression (transcriptome) analysis and genome-wide association studies (GWAS) for single nucleotide polymorphisms have generated a considerable amount of gene- and disease-related information, but heterogeneity and various sources of noise have limited the discovery of disease mechanisms. As systematic dataset integration is becoming essential, we developed methods and performed meta-clustering of gene coexpression links in 11 transcriptome studies from postmortem brains of human subjects with major depressive disorder (MDD) and non-psychiatric control subjects. We next sought enrichment in the top 50 meta-analyzed coexpression modules for genes otherwise identified by GWAS for various sets of disorders. One coexpression module of 88 genes was consistently and significantly associated with GWAS for MDD, other neuropsychiatric disorders and brain functions, and for medical illnesses with elevated clinical risk of depression, but not for other diseases. In support of the superior discriminative power of this novel approach, we observed no significant enrichment for GWAS-related genes in coexpression modules extracted from single studies or in meta-modules using gene expression data from non-psychiatric control subjects. Genes in the identified module encode proteins implicated in neuronal signaling and structure, including glutamate metabotropic receptors (GRM1, GRM7), GABA receptors (GABRA2, GABRA4), and neurotrophic and development-related proteins [BDNF, reelin (RELN), Ephrin receptors (EPHA3, EPHA5)]. These results are consistent with the current understanding of molecular mechanisms of MDD and provide a set of putative interacting molecular partners, potentially reflecting components of a functional module across cells and biological pathways that are synchronously recruited in MDD, other brain disorders and MDD-related illnesses. Collectively, this study demonstrates the importance of integrating transcriptome data, gene coexpression modules and GWAS results for providing novel and complementary approaches to investigate the molecular pathology of MDD and other complex brain disorders. © 2014 Chang et al
Recommended from our members
A computational method for genotype calling in family-based sequencing data
Background: As sequencing technologies can help researchers detect common and rare variants across the human genome in many individuals, it is known that jointly calling genotypes across multiple individuals based on linkage disequilibrium (LD) can facilitate the analysis of low to modest coverage sequence data. However, genotype-calling methods for family-based sequence data, particularly for complex families beyond parent-offspring trios, are still lacking. Results: In this study, first, we proposed an algorithm that considers both linkage disequilibrium (LD) patterns and familial transmission in nuclear and multi-generational families while retaining the computational efficiency. Second, we extended our method to incorporate external reference panels to analyze family-based sequence data with a small sample size. In simulation studies, we show that modeling multiple offspring can dramatically increase genotype calling accuracy and reduce phasing and Mendelian errors, especially at low to modest coverage. In addition, we show that using external panels can greatly facilitate genotype calling of sequencing data with a small number of individuals. We applied our method to a whole genome sequencing study of 1339 individuals at ~10X coverage from the Minnesota Center for Twin and Family Research. Conclusions: The aggregated results show that our methods significantly outperform existing ones that ignore family constraints or LD information. We anticipate that our method will be useful for many ongoing family-based sequencing projects. We have implemented our methods efficiently in a C++ program FamLDCaller, which is available from http://www.pitt.edu/~wec47/famldcaller.html
Glycogen Synthase Kinase (GSK) 3β phosphorylates and protects nuclear myosin 1c from proteasome-mediated degradation to activate rDNA transcription in early G1 cells
Nuclear myosin 1c (NM1) mediates RNA polymerase I (pol I) transcription activation and cell cycle progression by facilitating PCAF-mediated H3K9 acetylation, but the molecular mechanism by which NM1 is regulated remains unclear. Here, we report that at early G1 the glycogen synthase kinase (GSK) 3β phosphorylates and stabilizes NM1, allowing for NM1 association with the chromatin. Genomic analysis by ChIP-Seq showed that this mechanism occurs on the rDNA as active GSK3β selectively occupies the gene. ChIP assays and transmission electron microscopy in GSK3β-/- mouse embryonic fibroblasts indicated that at G1 rRNA synthesis is suppressed due to decreased H3K9 acetylation leading to a chromatin state incompatible with transcription. We found that GSK3β directly phosphorylates the endogenous NM1 on a single serine residue (Ser-1020) located within the NM1 C-terminus. In G1 this phosphorylation event stabilizes NM1 and prevents NM1 polyubiquitination by the E3 ligase UBR5 and proteasome-mediated degradation. We conclude that GSK3β-mediated phosphorylation of NM1 is required for pol I transcription activation
What is the role of the film viewer? The effects of narrative comprehension and viewing task on gaze control in film
Film is ubiquitous, but the processes that guide viewers' attention while viewing film narratives are poorly understood. In fact, many film theorists and practitioners disagree on whether the film stimulus (bottom-up) or the viewer (top-down) is more important in determining how we watch movies. Reading research has shown a strong connection between eye movements and comprehension, and scene perception studies have shown strong effects of viewing tasks on eye movements, but such idiosyncratic top-down control of gaze in film would be anathema to the universal control mainstream filmmakers typically aim for. Thus, in two experiments we tested whether the eye movements and comprehension relationship similarly held in a classic film example, the famous opening scene of Orson Welles' Touch of Evil (Welles & Zugsmith, Touch of Evil, 1958). Comprehension differences were compared with more volitionally controlled task-based effects on eye movements. To investigate the effects of comprehension on eye movements during film viewing, we manipulated viewers' comprehension by starting participants at different points in a film, and then tracked their eyes. Overall, the manipulation created large differences in comprehension, but only produced modest differences in eye movements. To amplify top-down effects on eye movements, a task manipulation was designed to prioritize peripheral scene features: a map task. This task manipulation created large differences in eye movements when compared to participants freely viewing the clip for comprehension. Thus, to allow for strong, volitional top-down control of eye movements in film, task manipulations need to make features that are important to narrative comprehension irrelevant to the viewing task. The evidence provided by this experimental case study suggests that filmmakers' belief in their ability to create systematic gaze behavior across viewers is confirmed, but that this does not indicate universally similar comprehension of the film narrative
Motor coordination problems in children and adolescents with ADHD rated by parents and teachers: effects of age and gender
Summary.
Objective. ADHD is frequently accompanied by motor coordination problems. However, the co-occurrence of poor motor performance has
received less attention in research than other coexisting problems in ADHD. The underlying mechanisms of this association
remain unclear. Therefore, we investigated the prevalence of motor coordination problems in a large sample of children with
ADHD, and the relationship between motor coordination problems and inattentive and hyperactive/impulsive symptoms. Furthermore,
we assessed whether the association between ADHD and motor coordination problems was comparable across ages and was similar
for both genders.
Method. We investigated 486 children with ADHD and 269 normal controls. Motor coordination problems were rated by parents (Developmental
Coordination Disorder Questionnaire) and teachers (Groningen Motor Observation Scale).
Results. Parents and teachers reported motor coordination problems in about one third of children with ADHD. Problems of fine and
gross motor skills, coordination skills and motor control were all related to inattentive rather than hyperactive/impulsive
symptoms. Relative to controls, motor coordination problems in ADHD were still present in teenagers according to parents;
the prevalence diminished somewhat according to teachers. Boys and girls with ADHD were comparably affected, but motor performance
in controls was better in girls than in boys.
Conclusions. Motor coordination problems were reported in one third of children with ADHD and affected both boys and girls. These problems
were also apparent in adolescents with ADHD. Clinicians treating children with ADHD should pay attention to co-occurring motor
coordination problems because of the high prevalence and the negative impact of motor coordination problems on daily life
Truck drivers' perceptions on wearable devices and health promotion:A qualitative study
Professional truck drivers, as other shift workers, have been identified as a high-risk group for various health conditions including cardiovascular disease, obesity, diabetes, sleep apnoea and stress. Mobile health technologies can potentially improve the health and wellbeing of people with a sedentary lifestyle such as truck drivers. Yet, only a few studies on health promotion interventions related to mobile health technologies for truck drivers have been conducted. We aimed to explore professional truck drivers views on health promotion delivered via mobile health technologies such as wearable devices.We conducted a phenomenological qualitative study, consisting of four semi-structured focus groups with 34 full-time professional truck drivers in the UK. The focus groups were audio-taped, transcribed verbatim and analysed using thematic content analysis. We discussed drivers perceptions of their health, lifestyle and work environment, and their past experience and expectations from mobile health technologies.The participants viewed their lifestyle as unhealthy and were aware of possible consequences. They expressed the need and wish to change their lifestyle, yet perceived it as an inherent, unavoidable outcome of their occupation. Current health improvement initiatives were not always aligned with their working conditions. The participants were generally willing to use mobile health technologies such as wearable devices, as a preventive measure to avoid prospect morbidity, particularly cardiovascular diseases. They were ambivalent about privacy and the risk of their employers monitoring their clinical data.Wearable devices may offer new possibilities for improving the health and wellbeing of truck drivers. Drivers were aware of their unhealthy lifestyle. They were interested in changing their lifestyle and health. Drivers raised concerns regarding being continuously monitored by their employer. Health improvement initiatives should be aligned with the unique working conditions of truck drivers. Future research is needed to examine the impact of wearable devices on improving the health and wellbeing of professional drivers
Meta-analysis methods for combining multiple expression profiles: Comparisons, statistical characterization and an application guideline
Background: As high-throughput genomic technologies become accurate and affordable, an increasing number of data sets have been accumulated in the public domain and genomic information integration and meta-analysis have become routine in biomedical research. In this paper, we focus on microarray meta-analysis, where multiple microarray studies with relevant biological hypotheses are combined in order to improve candidate marker detection. Many methods have been developed and applied in the literature, but their performance and properties have only been minimally investigated. There is currently no clear conclusion or guideline as to the proper choice of a meta-analysis method given an application; the decision essentially requires both statistical and biological considerations.Results: We performed 12 microarray meta-analysis methods for combining multiple simulated expression profiles, and such methods can be categorized for different hypothesis setting purposes: (1) HSA: DE genes with non-zero effect sizes in all studies, (2) HSB: DE genes with non-zero effect sizes in one or more studies and (3) HSr: DE gene with non-zero effect in "majority"of studies. We then performed a comprehensive comparative analysis through six large-scale real applications using four quantitative statistical evaluation criteria: detection capability, biological association, stability and robustness. We elucidated hypothesis settings behind the methods and further apply multi-dimensional scaling (MDS) and an entropy measure to characterize the meta-analysis methods and data structure, respectively.Conclusions: The aggregated results from the simulation study categorized the 12 methods into three hypothesis settings (HSA, HSB, and HSr). Evaluation in real data and results from MDS and entropy analyses provided an insightful and practical guideline to the choice of the most suitable method in a given application. All source files for simulation and real data are available on the author's publication website. © 2013 Chang et al.; licensee BioMed Central Ltd
Charged-particle distributions at low transverse momentum in √s=13 13 TeV pp interactions measured with the ATLAS detector at the LHC
Measurements of distributions of charged particles produced in proton–proton collisions with a centre-of-mass energy of 13 TeV are presented. The data were recorded by the ATLAS detector at the LHC and correspond to an integrated luminosity of 151 μb −1 μb−1 . The particles are required to have a transverse momentum greater than 100 MeV and an absolute pseudorapidity less than 2.5. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on multiplicity are measured in events containing at least two charged particles satisfying the above kinematic criteria. The results are corrected for detector effects and compared to the predictions from several Monte Carlo event generators
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
The Impact of Medical Interpretation Method on Time and Errors
Background: Twenty-two million Americans have limited English proficiency. Interpreting for limited English proficient patients is intended to enhance communication and delivery of quality medical care. Objective: Little is known about the impact of various interpreting methods on interpreting speed and errors. This investigation addresses this important gap. Design: Four scripted clinical encounters were used to enable the comparison of equivalent clinical content. These scripts were run across four interpreting methods, including remote simultaneous, remote consecutive, proximate consecutive, and proximate ad hoc interpreting. The first 3 methods utilized professional, trained interpreters, whereas the ad hoc method utilized untrained staff. Measurements: Audiotaped transcripts of the encounters were coded, using a prespecified algorithm to determine medical error and linguistic error, by coders blinded to the interpreting method. Encounters were also timed. Results: Remote simultaneous medical interpreting (RSMI) encounters averaged 12.72 vs 18.24 minutes for the next fastest mode (proximate ad hoc) (p = 0.002). There were 12 times more medical errors of moderate or greater clinical significance among utterances in non-RSMI encounters compared to RSMI encounters (p = 0.0002). Conclusions: Whereas limited by the small number of interpreters involved, our study found that RSMI resulted in fewer medical errors and was faster than non-RSMI methods of interpreting
- …
