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Abstract

Background: As sequencing technologies can help researchers detect common and rare variants across the
human genome in many individuals, it is known that jointly calling genotypes across multiple individuals based on
linkage disequilibrium (LD) can facilitate the analysis of low to modest coverage sequence data. However,
genotype-calling methods for family-based sequence data, particularly for complex families beyond parent-offspring
trios, are still lacking.

Results: In this study, first, we proposed an algorithm that considers both linkage disequilibrium (LD) patterns and
familial transmission in nuclear and multi-generational families while retaining the computational efficiency. Second,
we extended our method to incorporate external reference panels to analyze family-based sequence data with a
small sample size. In simulation studies, we show that modeling multiple offspring can dramatically increase
genotype calling accuracy and reduce phasing and Mendelian errors, especially at low to modest coverage. In
addition, we show that using external panels can greatly facilitate genotype calling of sequencing data with a small
number of individuals. We applied our method to a whole genome sequencing study of 1339 individuals at ~10X
coverage from the Minnesota Center for Twin and Family Research.

Conclusions: The aggregated results show that our methods significantly outperform existing ones that ignore
family constraints or LD information. We anticipate that our method will be useful for many ongoing family-based
sequencing projects. We have implemented our methods efficiently in a C++ program FamLDCaller, which is
available from http://www.pitt.edu/~wec47/famldcaller.html.
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Background
Next generation sequencing technologies have greatly
aided in comprehensively identifying common variants
(e.g. minor allele frequency (MAF) >1 %) and rare variants
(MAF <1 %), helping researchers understand genetic
coding and discover thousands of disease-susceptible
variants. For example, the recent 1000 Genomes Project
has provided characterization of human genome sequence
variation, aiding in understanding the relationship be-
tween genotype and phenotype [1, 2]. Sequencing studies
in families have unique advantages and strengths in

controlling population stratification, studying parent-of-
origin effects, identifying rare causal variants and detect-
ing de novo mutations [3–8]. Sequencing has also proven
successful in studying Mendelian disorders in families
[6, 9]. Numerous family-based sequencing projects
(often in the design of large number of trios/nuclear
families or a mixture of unrelated individuals and
small families) have been carried out or launched to
study complex diseases [10–14]. Many ongoing sequen-
cing projects include nuclear families (two parents with
one or more offspring) or multi-generational families.
Existing approaches include methods that either focus on
single sites, split pedigree into trios, or treat all sequenced
samples as unrelated individuals. Among the few existing
methods for genotype calling of family-based sequence
data, most methods consider family constraints at each
marker [15, 16] independently. The other methods

* Correspondence: wei.chen@chp.edu
3Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261,
USA
6Division of Pulmonary Medicine, Allergy and Immunology, Children’s
Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
Full list of author information is available at the end of the article

© 2016 Chang et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Chang et al. BMC Bioinformatics  (2016) 17:37 
DOI 10.1186/s12859-016-0880-5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/43007817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-016-0880-5&domain=pdf
http://www.pitt.edu/~wec47/famldcaller.html
mailto:wei.chen@chp.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


consider LD information but ignore family constraints.
Recently, Chen et al. proposed a method of genotype
calling method by considering family structure in
parent-offspring trios and showed the method can
achieve more accurate genotype calls in great amounts as
compared with the one without considering the family
structure (reduce genotype calling error rate by 50 %)
[17]. However, to our knowledge, there is no existing
method that jointly models family constraints and LD
pattern in complex pedigree (nuclear and extended
families).
In this paper, motivated by the previous methods, we

describe a novel method for genotype calling and phas-
ing in nuclear and extend families. The purpose of the
present paper is twofold. The first is to extend our previ-
ous method from analyzing trios to nuclear families or
families with multi-generations in a computationally effi-
cient manner. Here we focus on developing the proced-
ure by looping all possible parent-offspring trios to
update the probability of observed genotype given the
true genotype simultaneously, which is a pivotal step in
a hidden Markov model (HMM). Through two simu-
lated studies, which are with/without alignment and ex-
perimental errors, we evaluate the performance by using
the genotype error calling rate and phasing error (as
haplotypes are provided), and we show that incorporat-
ing more offspring within family (or complex family with
multiple generations) can have more accurate genotype
calls than trios only, especially in low to modest depth
in sequencing data. Secondly, the method can be ex-
tended to incorporate external reference panels for ana-
lyzing sequencing dataset including a small number of
samples. This is motivated by many pilot projects, which
often include a limited number of samples (e.g. one or
two trio) and LD information is not available in the
study population. External reference panels (e.g. the
1000 Genomes Project) will be useful in this scenario to
facilitate genotype calling and phasing if the LD pattern
in the study population is well captured. Through both
simulated and real studies, we show that our methods
outperform the existing methods that do not use LD
information or ignore the complex family constraints.

Methods
SNP discovery and genotype calling are two key steps
for downstream analyses after massive reads are gener-
ated by high-throughput sequencing machines [18–20].
In this paper, we only focus on refining genotypes after
polymorphic sites are discovered. We only focus on bi-
allelic markers and start with observed data P(Ri|Gi), the
likelihood of observed read Ri given an underlying true
genotype Gi for each position i from all candidate vari-
ants. For each site, the number of reference and alterna-
tive alleles are counted from the reads that cover the

study site, then P RijGið Þ is routinely calculated by
conventional tools (e.g. SAMtools) using various
models such as a binomial distribution [21]. For ex-
ample, the likelihoods P(Ri|Gi) by assuming independ-
ent error can be written as P Ri ¼ B; Eð ÞjGi ¼ 1; 1f gð Þ ¼
Π j 1−ej

� �I bj¼1ð Þ 1
3 ej
� �I bj≠1ð Þ for homozygous call “1/1”

and P Ri ¼ B; Eð ÞjGi ¼ 1; 2f gð Þ ¼ Π j
1
2 1−ej
� �I bj¼1ð Þ 1

3 ej
� �I bj≠1ð Þþ

n

1
2 1−ej
� �I bj¼2ð Þ 1

3 ej
� �I bj≠2ð Þg for heterozygous call “1/2”,

where B and E denote the vectors of base calls and
corresponding error probabilities. P(Ri|Gi) serves as
input data in our model.

HMM approach to describe chromosome mosaics
Li and Stephens indicated that the haplotypes of each
individual can be described as imperfect mosaics of
other haplotypes in the sample by using hidden
Markov model (HMM) [22], and this approach has
been successfully applied to genotype imputation and
haplotype reconstruction [23–25]. This approach has
also been used in genotype calling for sequence data.
In this section, we briefly reviewed the HMM method
to model unrelated samples for the sequence data.
First, we sampled an allele from each individual
haplotype in reference panels consistent with observed
data at each position. Second, we used HMM method to
update the haplotype for each individual, describing the
pair of haplotypes as an imperfect mosaic of other refer-
ence panels.
Here we will describe the HMM model to show how

we update the haplotypes of each individual conditional
on all the other samples’ haplotype estimates. We denote
the probability of an underlying truth genotype Gi given
the mosaic state Si, P(Gi|Si). The function T(Si) was
defined as the number of different alleles for genotype
Gi = {0, 1, 2}. So P(Gi|Si) was defined by

1−εið Þ2 T Sið Þ ¼ 0 or T Sið Þ ¼ 2½ � and T Sið Þ ¼ T Gið Þ
εi 1−εið Þ T Sið Þ ¼ 0 or T Sið Þ ¼ 2½ � and T Sið Þ−T Gið Þj j ¼ 1

εi2 T Sið Þ ¼ 0 or T Sið Þ ¼ 2½ � and T Sið Þ−T Gið Þj j ¼ 2
1−εið Þ2 þ εi2 T Sið Þ ¼ 1 and T Sið Þ ¼ T Gið Þ
2εi 1−εið Þ T Sið Þ ¼ 1 and T Sið Þ≠T Gið Þ

8>>>><
>>>>:

ð1Þ
where εi is the cumulative effects of mutation and gene
conversion (we called it mosaic error rate here) at
marker i. Then we can calculated the emission probability
of P(Ri|Si) as:

P RijSið Þ ¼
X

Gi
P RijGið Þ � P GijSið Þ ð2Þ

Then the transition probability P(Si + 1|Si) in the HMM
was defined by

P Siþ1 ¼ w; vð ÞjSi ¼ x; yð Þð Þ
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¼

θ2i
H2 w≠x and y≠v

1−θið Þθi
H

þ θ2i
H2 w≠x and y ¼ vf gor

w ¼ x and y≠vf g
1−θið Þ2 þ 2 1−θið Þθi

H
þ θ2i
H2 w ¼ x and y ¼ v

8>>>>>>>>><
>>>>>>>>>:

ð3Þ

where θi is the mosaic transition rate from position i to
position i + 1, and H is the number of haplotypes in the
reference panel. Our goal is to calculate P GijRð Þ , the
probability of a genotype at position i conditional on all
sequence reads:

P GijRð Þ ¼
X

Si
P GijSið Þ � P SijRð Þ ð4Þ

by looping all possible state Si . Baum’s forward-
backward algorithm was used to calculate P SijRð Þ and P
GijRð Þ [26].
The model we described was based on the unrelated

individuals. Chen et al. (2013) proposed a computation-
ally efficient genotyping method of joint modelling for
trios by considering both LD and the constraints of
Mendelian inheritance [17]. Suppose Rf , Rm and Rc are
observed genotype calls; Gf , Gm and Gc are underlying
truth genotype calls and the corresponding genotype
likelihoods are P Rf jGf

� �
, P RmjGmð Þ and P RcjGcð Þ for the

father, mother and child within a trio, respectively. For
updating the haplotypes from a trio in each iteration at
position i, they first update the paternal haplotypes by
sampling a mosaic state Sf ið Þ, then the emission probabil-
ity can be replaced to

P �RijSf ið Þ
� � ¼

X
g
P �RijGf ¼ g
� �� P Gf ¼ gjSf ið Þ

� �

ð5Þ

where �Ri are observed genotype calls of Rf ið Þ , Rm ið Þ and
Rc ið Þ within a trio at position i. So the genotypes likelihood
within a trio at position i conditional on father’s genotype
Gf ¼ g is P �RijGf ¼ g

� � ¼ P �Ri; Gf ¼ g
� �

=P Gf ¼ g
� �

=
P

gm
P

Rf jGf ¼ g
� �� P Rm Gm ¼ gm

�� �� P
�

RcjGc ¼ð transmitt

gf ; gm
� �

Þ � P Gm ¼ gmÞ
�

, where the transmitt Gf ;Gm
� �

is

the function which returns the genotype of child condi-
tional on gnoetypes Gf and Gm . Second, they up-
dated the maternal haplotype conditional on the
sampled paternal genotype updated from the first step,

thus P �RijSi;Gf ¼
�

gf Þ ¼
P

gP �RijGm ¼ g;Gf ¼ gf
� �

� P

Gm ¼ gjSið Þ , and the final expression of a trio can be

written as P �RijGm ¼ gm;Gf ¼ gf
� �

¼ P Rf jGf ¼ gf
� �

� P

RmjGm ¼ gm
� �� P Rcð jGc ¼ transmitt gf ; gm

� �
. By updat-

ing each parent at a time in each iteration can greatly re-
duce the computational cost without losing the genotype
accuracy (5 to 10 %).

Procedure for modeling complex family
Chen et al. [17] proposed a strategy for parent-offspring
trios with computational efficient modeling of LD and the
constraint due to Mendelian inheritance. They showed that
the method can greatly increase the accuracy of genotype
calling. We extended their proposed algorithm to handle
complex family by looping all possible trios across each fam-
ily. Consistent with their paper, we denote Rf k , Rmk and Rck

as the read data from k-th possible trio loop within a nuclear
family. Gf k , Gmk and Gck as the underlying truth genotype
for the father, mother and child, and the genotype likeli-
hoods are denoted by P Rf k jGf k

� �
, P Rmk jGmkð Þ and P Rck jGckð Þ .

The procedure for each iteration is described below:

I. At position i, we randomly select a child in family
and corresponding parents, denoted by
�Ri1 ¼ Rf ið Þ1;Rm ið Þ1;Rc ið Þ1

� �
II. First update parental haplotypes by sampling a

mosaic state Sf(i)1 for father, then the emission
probability can be written as P �Ri1jSf ið Þ1

� � ¼X
g
P �Ri1jGf ið Þ1 ¼ g
� �� P Gf ið Þ1 ¼ gjSf ið Þ1

� �
; and

P �Ri1jGf ið Þ1 ¼ g
� � ¼ P �Ri1;Gf ið Þ1¼gð Þ

P Gf ið Þ1¼gð Þ ¼ P
gm
P

Rf ið Þ1jGf ið Þ1 ¼ g
� �� P Rm ið Þ1jGm ið Þ1 ¼ gm

� �� P

Rc ið Þ1jGc ið Þ1 ¼ transmit gf ; gm
� �� �

; where transmit

(Gf , Gm) returns the genotype for child conditional
on ordered parental genotypes Gf and Gm

III. Update maternal haplotypes at position i conditional
on the sampled genotype for the first parent. Thus:

P �Ri1jSi1;Gf ið Þ1 ¼ gf

� �
¼

X
g
P Rf ið Þ1jGf ið Þ1 ¼ gf

� �

� P Rm ið Þ1jGm ið Þ1gm
� �

� P Rc ið Þ1jGc ið Þ1 ¼ transmit gf ; gm

� �� �

IV. Randomly select second child (Rc ið Þ2) and
corresponding parents updated from previous trio
loop, and repeat step I – step III until all children
(Rc ið Þk ; k ¼ 1; 2;…; nlwherenl isnumberof children
in family l) are all used within each family.

V. Update next family and repeat step I – step IV until
all families are iterated.

In each iteration, we considered all combination of the
order of selecting children in each family for 100 times
in the simulation study. Each round of update generates

Chang et al. BMC Bioinformatics  (2016) 17:37 Page 3 of 13



new ordered haplotypes for each family (can be unre-
lated individual, parent-offspring trio, nuclear family or
family with multiple generations), and the consensus
haplotype was generated by assigning the most frequently
sampled allele at each position. Figure 1 illustrates the
example of updating haplotypes for each iteration in a
nuclear family with three offspring. For each iteration, we
randomly selected one offspring to form a trio, and up-
dated the haplotypes of parents and offspring (step II. and
III. of the procedure). We then randomly selected second
offspring to form a trio with parents’ haplotypes updated
from previous step, and repeated step II and III until all
possible trios were looped in each family. This method
can also be applied to multi-generational family in a simi-
lar manner by looping through all offspring in a random
order at each iteration.

Use of phased reference panels
Public reference panels (e.g. 1000 Genomes Project and
HapMap Project) can provide extra LD information for
genotype calling and have been successful in facilitating
imputation. For genotyping sequence data, most existing
software do not use the information from reference
panels or have to recall genotypes of reference panels
together with study samples. Our method and implemen-
tation can incorporate phased reference panels efficiently
into our genotype calling procedure. It has two advan-
tages: (1) we will be able to call a small number of
sequenced families/individuals using LD information from
a similar population with phased haplotypes available and
(2) the computation will be efficient because we don’t have
to call all individuals but only sequenced individuals. This
approach is particularly useful for sequencing studies with

Fig. 1 The example of updating haplotypes in a nuclear family with three offspring for each iteration. In step I, the child #4 was randomly
selected to form a trio, and then we updated all three haplotypes in step II. The child #3 was randomly selected in step III and form a new trio
with updated haplotypes of parents updated in step II. We repeated the same procedure until all children were selected (step IV to VI)
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a small sample size and a reference panels from the simi-
lar population.

Simulated data
In the first simulation scheme we considered 80 nuclear
families, with each family having two founders and four
offspring. To be realistic, we generated 12 regions with
1 Mb length of haplotypes (2,845,360 sites in average),
with each region containing 10,000 haplotypes generated
from a coalescent model to mimic the LD pattern, popu-
lation demographic history, and local recombination
rates of European ancestry samples [27]. We randomly
sampled haplotypes for founders in each family and sim-
ulated the Mendelian transmission for the haplotypes of
offspring. The short reads were simulated by assuming
depth at each site followed a Poisson distribution and
were defined per-based sequencing error rate. Each sam-
ple was sequenced at depth 2x, 6x and 10x by assuming
per base error rate of 0.01 (Phred scaled base quality of
Q20). In order to compare with the “TrioCaller” software
proposed in Chen et al. [17], we considered the follow-
ing procedure when calling genotypes in each nuclear
family: we selected first child to form into a trio and
treated other three children as unrelated subjects, which
are the results of “TrioCaller”, and we then included the
second child into consideration at a time until all children
were used.
In the second simulation scheme, we further consid-

ered sequencing and alignment errors using the 1000
Genomes Project (1000GP) data. We simulated foun-
ders’ entire genomes by randomly selecting a pair of
haplotypes from the 1000GP CEU population (March
2012 Phase 1 release). For non-founders, we simulated
cross-overs in the parental haplotypes based on the genetic
map in the HapMap data, and then generated offspring ge-
notypes by randomly selecting one haplotype from each
parents. We then simulated paired-end 100 bp reads ac-
cording to Poisson distribution on the genome, with a
mean insertion size of 400 bp and a standard deviation of
50 bp, and a sequencing error rate of 0.01 per base. We
used BWA to align simulated reads to the reference of
hg19 and carried out standard procedure for variant call-
ing using Genome Analysis Toolkit (GATK) [28], includ-
ing indel-realignment and base quality realignment. The
list of known indels from 1000GP was provided to GATK
for re-alignment prior to variant calling in different depths
5x, 10x, 20x and 30x with 3,005,070 sites on chromosome
1. There are five families, and each family has 14 members
(see pedigree in Additional file 1: Figure S1). We consid-
ered the simulation settings similar to our first simulation
scheme: we selected nuclear family (parents and three
offspring) in each big family, then we selected first child to
form into a trio and treated another two children as
unrelated subjects, and included the second child into

consideration at a time until all children were used.
In addition, we also selected complex family with three
generations from each big family.
Next, we investigate if the reference panels can help

increase genotyping accuracy. We designed a simulation
study by considering 2, 3 and 4 parent-offspring trios
with depth 2x, 6x and 10x with per-base error rate of
0.01(Q20). For reference panels, we considered 10, 20,
40 and 60 founders from the 1000 Genome Project.

Evaluation criteria
First, we evaluated the performance of genotype calls
using genotype mismatch rate between genotypes esti-
mated by our proposed algorithm and surrogated gold
standard genotypes from simulated data, especially in
heterozygous sites, which are more sensitive cases in
genotype accuracy. Second, we calculated switch error
that is defined as the number of switched alleles between
estimated haplotypes by our proposed algorithm, and
haplotypes from simulated data to evaluate the haplotyp-
ing accuracy. Last, we evaluated Mendelian error by calcu-
lating the number of incompatible alleles between each
offspring and corresponding parents.

Results
Overall performance of genotype accuracy
We evaluated the performance of our proposed algo-
rithm for genotype calling method in simulation studies
and real data analysis. We have two goals: (1) extend the
existing method for analyzing trio-based data sets to
handle complex family with multiple offspring and/or
generations and (2) propose a function to analyze a
small number of family-based samples incorporating the
external reference panels, such as subjects from 1000
Genomes Project. For goal one, we considered two
simulation studies with/without considering alignment
and experimental errors. We first evaluated the genotype
accuracy when adding more offspring in each family.
Figure 2 shows the mean of the genotype mismatch rate
of heterozygous calls and SNP with minor allele fre-
quency (MAF) <5 % summarized from twelve simulated
haplotypes. It shows the clear pattern that adding more
offspring per family can reduce the genotype mismatch
rate (see also Additional file 1: Table S1), especially in
low depth (2x). The genotype mismatch rate of hetero-
zygous calls can be reduced from 4.5 to 4.38 % to 4.18
to 3.94 % when one, two, three and all four offspring
were considered, respectively. Sequencing depth also
contributed to genotype accuracy: as 80 trios and 240
unrelated samples were sequenced, the genotype mis-
match rates of heterozygous calls reduced from 4.48 to
0.875 % to 0.257 % as depth increase from 2x to 6x to
10x. The advantage of our proposed method makes it
clear that adding more offspring can achieve more
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accurate genotype calls, especially at low sequencing
depths. In addition, we have performed additional analysis
to compare our result with the latest version of Beagle,
which takes pedigree for genotype calling. We found that
our proposed algorithm for genotype calling performs bet-
ter than the results from Beagle (see Additional file 1:
Table S1) in simulated scenarios. We performed Wilcoxon
rank sum test to test the mean genotype mismatch rate of
multiple offspring in the unclear family compared with
the result from “TrioCaller”. For heterozygous calls at
depth 2x, the p values are 0.221, 0.099 and 0.016 as in-
cluding 2, 3 and 4 offspring compared with trios (P values
were 0.022, 2.478 × 10-5 and 7.396 × 10-7 at depth 6x;
0.001, 3.698 × 10-7 and 1.822 × 10-5 at depth 10x). For
SNP with MAF <5 % at depth 2x, the p values are 0.014,
4.43 × 10-6 and 3.698 × 10-7 as including 2, 3 and 4
offspring compared with trios (P values were 0.0001,
7.396 × 10-7 and 3.698 × 10-7 at depth 6x; 3.698 ×
10-7, 3.698 × 10-7 and 3.698 × 10-7 at depth 10x). In
addition, we also applied “TrioCaller” 100 times by
randomly selected a child to form a trio and all the
other children as independent individuals for all 80
families in the first simulation and took the consensus
genotype calls from 100 results. Additional file 1: Figure
S2 shows the genotype mismatch rate of heterozygous
calls were 0.0476, 0.0117 and 0.0035 at depth 2x, 6x and
10x, respectively. There is no improvement of genotype
mismatch rate by taking consensus genotype calls from

100 results as compared with the result from TrioCaller.
The second simulation scheme considered alignment and
experimental errors also targeted on the first purpose.
Additional file 1: Table S2 shows the genotype mismatch
rate of heterozygous calls. In general, GATK has high
genotype mismatch rate, especially with depth 5x (16.4 %)
and 10x (2.7 %) and our proposed method greatly outper-
formed the results from GATK. When all three offspring
were all considered in our algorithm, the genotyping er-
rors of heterozygous SNPs reduced from 16.4 % and 2.7 %
to 0.9 % and 0.4 % at 5x and 10x coverage, respectively.
Genotype mismatch rate will keep decreasing when add-
ing more offspring when using our proposed method, es-
pecially at low depth 5x. The genotype discordance error
rate can be reduced from 0.92 % to 0.84 % to 0.77 % by
considering one, two and three offspring in each family at
5x coverage. Furthermore, we selected five members from
the pedigree in Additional file 1: Figure S1 to form a
complex family structure (with three generations) and
Additional file 1: Table S2 shows our proposed
method can still improve the genotype accuracy of
heterozygous SNPs (genotype mismatch rate are 0.86,
0.37, 0.24 and 0.25 % at depths 5x, 10x, 20x and 30x,
respectively). In addition, GATK considered trio infor-
mation for genotype calling, the genotype mismatch
rate can be reduced from 16.4 to 10.52 %, 2.77 to
1.75 %, 0.45 to 0.36 %, 0.31 to 0.26 % at 5x, 10x, 20x,
30x coverage, respectively.

Fig. 2 Genotype mismatch rate and standard errors of heterozygous calls and SNPs with MAF <5 % (Simulation I). The proportion of genotype
mismatch rate for heterozygous SNPs (left) and SNPs with minor allele frequency (MAF) <5 % (right) with sequencing coverage of 2x, 6x and 10x
and bases with Phred-scaled quality Q20 (1 % error per-based rate). (C1: trios; C2: nuclear families of two offspring; C3: nuclear families with three
offspring and C4: nuclear families of four offspring.)
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Performance of haplotyping
Haplotype reconstruction plays an important role for
follow-up analysis such as genotype imputation, and
studying the population history. The phasing error rates
were calculated by the mean number of mismatched al-
leles between reconstructed haplotypes by using our
proposed algorithm and haplotypes from simulated data
(we assumed the simulated haplotypes was underlying
truth). The first simulation results from 12 simulated
haplotypes are summarized in Fig. 3 and Additional file
1: Table S3. In summary, at low depth 2x, adding more
offspring in each family can keep reducing switch errors.
For instance, the phasing error rate can reduce 25 %
when all four offspring were taken into consideration
compared with trio-based (only considers one offspring).
Similar to genotype accuracy, sequencing depth contrib-
uted to phasing error rate, but our proposed method still
showed its advantage when lowering the phasing error
when adding more offspring. The p values of Wilcoxon
sun rank test of the phasing error rate of 2, 3 and 4 off-
spring in the unclear family compared with the result from
trios at depth 2x were 0.071, 0.007 and 0.018, respectively
(P values were 0.0001, 3.698 × 10-7 and 3.698 × 10-7 at
depth 6x; 2.589 × 10-6, 3.698 × 10-7 and 3.698 × 10-7 at
depth 10x). Beagle shows perfect phasing in our simulation
possibly because there are more miscalled heterozygotes,
which are not counted in the calculation of switch errors.
In the second simulation, Additional file 1: Table S4 shows
our proposed algorithm has better phasing error in 5x and
10x coverage than GATK, but not in 20x and 30x coverage.

Performance of Mendelian errors
Since our proposed method considered the family con-
straint (we considered trio at a time within whole family
structure), we can lower the Mendelian errors. We cal-
culated the Mendelian errors by calculating the total
number of Mendelian inconsistent genotypes divided by
the total number of offspring in simulated data set. In
our first simulation study without considering alignment
and experimental errors, the mean number of Mendelian
errors of our proposed method when considering all
four offspring compared with trio-based methods in
simulated data can be dropped from 13.86 to 9.04, 3.74
to 2.37 and 1.42 to 0.63 at 2x, 6x and 10x coverage, re-
spectively (see Fig. 4 and Additional file 1: Table S5).
The p values of Wilcoxon sun rank test of the phasing
error rate of 2, 3 and 4 offspring in the unclear family
compared with the result from trios at depth 2x were
0.057, 3.698 × 10-7 and 3.698 × 10-7, respectively (P values
were 0.023, 1.664 × 10-5 and 3.698 × 10-7 at depth 6x;
4.85 × 10-5, 1.822 × 10-5 and 3.698 × 10-7 at depth 10x).
The second simulation summarized in Table 1 showed
the mean number of Mendelian errors for each offspring
with considering alignment and experimental errors. As
compared with the results from GATK, our proposed
method can reduce the mean number of Mendelian error
from 28,213 and 6475 to 718 and 228 at 5x and 10x cover-
age, respectively. In addition, when adding more offspring
into consideration, our algorithm can achieve lower Men-
delian errors, especially with low depth 5x: the mean
number of Mendelian errors were reduced from 1118 to

Fig. 3 Phasing error rate and standard errors (Simulation I). The phasing rate of sequencing coverage of 2x, 6x and 10x and bases with Phred-scaled
quality Q20 (1 % error per-based rate). (C1: trios; C2: nuclear families of two offspring; C3: nuclear families with three offspring and C4: nuclear families
of four offspring.)
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962 to 718 when considering one, two and three offspring
in each family, respectively.

Performance of incorporating reference panels
Next, we proceeded to evaluate the genotype mismatch
rates, phasing errors and Mendelian errors by incorporat-
ing external references when sequencing data with small
sample sizes for our second purpose (see the simulation re-
sults summarized in Figs. 5, 6 and 7 and Additional file 1:
Table S6 to Table S8). In summary, for limited number of
sequenced samples, by incorporating external references
our proposed algorithm can also provide the accurate
genotypes, and reduce the phasing errors and Mendelian

errors. For example, the genotype mismatch rates dropped
from 7 to 4 % to 2.8 to 2.4 %, the phasing error rates
dropped from 0.2 to 0.12 % to 0.08 to 0.07 %, and the
mean number of Mendelian errors dropped from 5.92 to
3.21 to 1.92 to 1.46 when incorporating 10, 20, 40 and 60
founders from 1000 Genome Project for 2 sequenced trios
at 2x coverage. Sequencing depth is also a key factor for
genotype accuracy, and we found that increasing the num-
ber of external references (founders) can be a good way to
compensate the depth: the genotype mismatch rate at
coverage 2x incorporated by 60 founders is 2.4 %, which is
similar to the genotype mismatch rate at coverage 6x in-
corporated by 10 founders (~2 %); the genotype mismatch

Fig. 4 Mendelian error rate and standard errors (Simulation I). The mean number of Mendelian errors for each offspring with sequencing coverage of
2x, 6x and 10x and bases with Phred-scaled quality Q20 (1 % error per-based rate). (C1: trios; C2: nuclear families of two offspring; C3: nuclear families
with three offspring and C4: nuclear families of four offspring.)

Table 1 Mendelian error rate (Simulation II). The mean number of Mendelian errors for each offspring with sequencing coverage of
5x, 10x. 20x and 30x from our proposed method “FamLDCaller” (FLDC) compared with the results from Genome Analysis Toolkit
(GATK). (F3: trios; F4: nuclear families of two offspring; F5: nuclear families with three offspring and F6: complex families with three
generations.)

Depth 5 10 20 30

Method GATK FLDC GATK FLDC GATK FLDC GATK FLDC

F3 28,213 1118 6475 483 927 182 628 164

F4 28,213 962 6475 350 927 135 628 126

F5 28,213 718 6475 228 927 94 628 86

F6 33,427 351 7420 99 1161 46 805 39
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Fig. 5 Genotype discordance rate and standard errors of heterozygous calls (Simulation III). The proportion of genotype mismatch rate for
heterozygous SNPs with sequencing coverage of 2x, 6x and 10x and bases with Phred-scaled quality Q20 (1 % error per-based rate). (ref10: 10
founders; ref20: 20 founders; ref30: 30 founders and ref40: 40 founders in reference panels from 1000 Genome Project)

Fig. 6 Phasing error rate and standard errors (Simulation III). The phasing error rate for heterozygous SNPs with sequencing coverage of 2x, 6x
and 10x and bases with Phred-scaled quality Q20 (1 % error per-based rate). (ref10: 10 founders; ref20: 20 founders; ref30: 30 founders and ref40:
40 founders in reference panels from 1000 Genome Project)
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rate at coverage 6x incorporated by 60 founders is 0.55 %,
which is similar to the genotype mismatch rate at coverage
10x incorporated by ten founders (0.56 %).

Performance on real data
We applied our methods to an ongoing sequencing pro-
ject, which has a total of 1339 samples and includes 623
families with an average depth 10x from the Minnesota
Center for Twin and Family Research [29]. The sequencing
experiment was conducted using Illumina HiSeq 2000 at
the University of Michigan. We focused on 1,880,175 sites
on chromosome 20 and calculated the mismatch rate
between the called genotypes from our method and the
available genotypes from accurate DNA microarray chips.
Then, we compared the mismatch rate using our methods
with that using other existing method Beagle [30] and
Thunder [18]. All genotype discordance of stratified ana-
lysis were summarized in Table 2. For all SNPs, the geno-
type mismatch rate of our method with 100 rounds, Beagle
and Thunder are 0.000798, 0.001049 and 0.001158; For
heterozygous SNPs, the genotype mismatch rate of our
method with 100 rounds, Beagle and Thunder are 0.01552,
0.00195 and 0.002281. We will continue our investigation
when more sequence data are available. For SNPs with
maf <5 %, the genotype mismatch rate of our method with
100 rounds, Beagle and Thunder are 0.003503, 0.002669
and 0.004161. Specifically, we also investigated few small

regions on chromosome 20 using different states (200, 400
and 600), as a result, the genotype mismatch rate for het-
erozygous calls was reduced from 0.001224 to 0.001035 to
0.001016 when 200, 400 and 600 states were used. When
comparing with Beagle, the genotype mismatch rate for
SNPs with maf <5 % from our method using 200 states is
comparable with that from Beagle.
We also applied our method to the 1000 Genomes

Project (www.1000genomes.org) on deep sequenced
trios for our second purpose to incorporate external
panels when analyzing family-based sequencing data
with small sample size. There are two trios with one trio
from CEU and the other from YRI. These two trios have
been genotyped on OMNI chip. For CEU trio, the

Fig. 7 Mendelian error rate and standard errors (Simulation III). The mean number of Mendelian errors for each offspring with sequencing
coverage of 2x, 6x and 10x and bases with Phred-scaled quality Q20 (1 % error per-based rate). (ref10: 10 founders; ref20: 20 founders; ref30: 30
founders and ref40: 40 founders in reference panels from 1000 Genome Project)

Table 2 Genotype discordance rate of all SNPs, heterozygous
SNPs and SNPs with maf <5 % in the real data analysis of
Minnesota Center for Twin and Family Research

All SNPs Heterozygotes SNPs with maf <5 %

FamLDCaller (100 states) 0.00080 0.0016 0.0035

FamLDCaller (200 states) 0.00066 0.0012 0.0025

FamLDCaller (400 states) 0.00056 0.0010 0.0018

FamLDCaller (600 states) 0.00059 0.0010 0.0018

Beagle 0.00105 0.0019 0.0027

Thunder (200 states) 0.00116 0.0023 0.0042
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genotype mismatch rates are 1:48� 10�3 and 1:78� 10�3

for all and heterozygous SNPs, respectively; for YRI trio,
the genotype mismatch rate are 1:89� 10�3 and 2:35
�10�3 for all and heterozygous SNPs, respectively. It im-
plies that our method can achieve reasonable accuracy in
genotype calling. TrioCaller or GATK does not have such
functionality to incorporate external panels.

Conclusions and discussions
In this study, we proposed a computationally efficient
algorithm to infer genotypes by considering multiple off-
spring in family-based sequencing data. Our proposed
method outperforms existing programs such as TrioCal-
ler, GATK, and Beagle in general families with multiple
offspring at low to modest sequencing coverage. In the
simulation studies, we showed our proposed algorithm
can obtain more accurate genotype calls, lower phasing
errors and Mendelian errors, compared with the
methods that only ignore family or LD information. In
addition, our proposed algorithm provides a function to
incorporate the external panels when only a small num-
ber of family samples (e.g. 2–4 trios) are sequenced. We
showed that our method can achieve satisfying results
for small-scale studies using external reference panels.
Comparing to existing methods, one advantage of our

implementation is that it allows external reference
panels as input. Although sequencing cost has dropped
significantly in the past few years, it is still not practical
to perform large-scale whole-genome sequencing studies
for most laboratories; typically one or a few families are
sequenced as a pilot study. LD-aware approaches are not
working appropriately if only a small number of families
are sequenced because the number of independent sam-
ples limits state space. Using external phased haplotypes
from a similar population, our algorithm can efficiently
construct state space and infer sequence samples. Most
existing software do not provide such functionality and
are not applicable to small-scale studies, while our imple-
mentation can directly take external phased haplotypes in
VCF format. We suggest that this function can be used
when an external panel with similar LD structures of
study population are available.
The computational cost of our method is comparable

to LD-aware methods for unrelated individuals. Practic-
ally, methods (e.g. TrioCaller) on trio data can be applied
on general families. For each nuclear family, we can ran-
domly pick a child to form a trio with the parents and
treat the other children as unrelated individuals. A child is
randomly chosen to be included in the trio in each
Markov chain Monte Carlo (MCMC) iteration. Each child
will be included in the trio in certain iterations. The hap-
lotypes sampled in each iteration are merged to generate
consensus haplotypes while minimizing crossovers over

all sampled haplotypes. However, the convergence of such
a strategy might be slow because only one child is in-
cluded in the trio in each round, and the inferred haplo-
types of the parents are not able to reflect the actual
transmission to each child, particularly in a region where
family recombination occurs. For convergence rates of our
algorithm, we tested different number of rounds 20, 40, 60
and 80 compared with 100 rounds that we used in the first
simulation study. For 80 nuclear families with four off-
spring were all included, the genotype mismatch rate of
heterozygous calls at depth 2x were 0.0459, 0.0418,
0.0405, 0.04007 and 0.0398 when using 20, 40, 60, 80 and
100 rounds. In addition, the genotype mismatch rate of
heterozygous calls at higher depth 10x were 0.00161,
0.00152, 0.00149, 0.00145 and 0.0145 when using 20, 40,
60, 80 and 100 rounds. In summary, the genotype con-
verges faster at high depth, and increasing the number of
rounds can achieve more accurate genotypes but may
require more computational cost. Our method also works
for complex family such as the pedigree has three genera-
tions, and the complexity of the pedigree will affect the
convergence rate, but not much because we form all pos-
sible trio combination from the pedigree in each iteration,
which can only affect the computing time. Mendelian er-
rors are expected to be elevated. In our implementation,
each child is modeled separately in each MCMC round.
Our approach duplicates parents for each child after load-
ing the data. Hence, a nuclear family with n children will
be split into n trios (parents are duplicated n-1 times). We
consider these n trios to be independent in each round.
Each pair of duplicated parents will be sampled and con-
sensus haplotypes will be generated at the end of the
process. Thus, all children will contribute to parents and
transmission information is stored in each trio. Our strat-
egy balances the computational and statistical complexity.
Roughly, computation cost increases linearly with the
average number of offspring in each family.
To further refine the method, reduce Mendelian errors,

and accurately detect recombination points, a more statis-
tically rigorous method could be implemented to jointly
model the whole family. However, the computation is not
feasible in practice because the state space increases expo-
nentially. Advanced models are needed to combine both
LD information and genetic inheritance in a rigorous and
efficient way. We anticipate that phasing quality can be
further improved – we will explore this direction in future.
We note there are ongoing improvements from other
tools such as GATK, BEAGLE, IMPUTE2 and SHAPEIT.
Those improvements can be potentially complementary to
our approach. Nevertheless, we provide a unique and
practical tool to infer genotype and phasing for general
families. A comprehensive study of family-based genotype
calling methods is beyond the scope of the current study
and will be explored elsewhere.
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Our method also provides some benefits for down-
stream association analysis. The proposed process is sto-
chastic. Sampled haplotypes for each individual are drawn
in each round and a consensus haplotype is generated for
final output. This process provides extra sampling infor-
mation (uncertainty of genotype calling) that can be used
in downstream association analyses. For example, we can
perform multiple association analyses using sampled hap-
lotypes and summarize test statistics using a multiple im-
putation framework. Existing LD-aware methods usually
generate final consensus haplotypes without such options.
We have implemented our methods efficiently in a

C++ program FamLDCaller, which is available from
http://www.pitt.edu/~wec47/famldcaller.html. The pro-
gram can take standard VCF and pedigree files as input.
Background information and tutorial examples are also
provided to facilitate researchers who are not familiar with
genotype calling for family-based sequencing data. We
hope the packages can be useful to the processing of
family-based sequencing data.
To summarize, we present a computational tool for

genotype calling and haplotype inference in complex
families. This tool is complementary to existing methods
and can be valuable to many ongoing family-based se-
quencing project.
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