57 research outputs found

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Role of Sulfur Compounds in Garlic as Potential Therapeutic Option for Inflammation and Oxidative Stress in Asthma

    No full text
    Asthma is a chronic inflammatory disease in the airways with a multifactorial origin but with inflammation and oxidative stress as related pathogenic mechanisms. Garlic (Allium sativum) is a nutraceutical with different biological properties due to sulfur-containing natural compounds. Studies have shown that several compounds in garlic may have beneficial effects on cardiovascular diseases, including those related to the lungs. Therefore, it is possible to take advantage of the compounds from garlic as nutraceuticals for treating lung diseases. The objective of this article is to review the biological properties of the sulfur compounds present in garlic for the treatment of asthma, as well as the cellular mechanisms involved. Here, we discuss the potential therapeutic effects of garlic compounds in the modulation of inflammation and oxidative stress, as well as its antibiotic and antiviral activities for identifying and testing potential treatment options for asthma management

    Cellular Mechanisms Underlying the Cardioprotective Role of Allicin on Cardiovascular Diseases

    No full text
    Cardiovascular diseases (CVDs) are a group of diseases in which the common denominator is the affection of blood vessels, heart tissue, and heart rhythm. The genesis of CVD is complex and multifactorial; therefore, approaches are often based on multidisciplinary management and more than one drug is used to achieve the optimal control of risk factors (dyslipidemia, hypertension, hypertrophy, oxidative stress, endothelial dysfunction, inflammation). In this context, allicin, a sulfur compound naturally derived from garlic, has shown beneficial effects on several cardiovascular risk factors through the modulation of cellular mechanisms and signaling pathways. Effective pharmacological treatments for CVD or its risk factors have not been developed or are unknown in clinical practice. Thus, this work aimed to review the cellular mechanisms through which allicin exerts its therapeutic effects and to show why it could be a therapeutic option for the prevention or treatment of CVD and its risk factors

    Allicin, an Emerging Treatment for Pulmonary Arterial Hypertension: An Experimental Study

    No full text
    We assessed whether allicin, through its antihypertensive and antioxidant effects, relieves vascular remodeling, endothelial function, and oxidative stress (OS), thereby improving experimental pulmonary arterial hypertension (PAH). Allicin (16 mg/kg) was administered to rats with PAH (monocrotaline 60 mg/kg). Allicin encouraged body weight gain and survival rate, and medial wall thickness and the right ventricle (RV) hypertrophy were prevented. Also, angiotensin II concentrations in the lung (0.37 ± 0.01 vs. 0.47 ± 0.06 pmoles/mL, allicin and control, respectively) and plasma (0.57 ± 0.05 vs. 0.75 ± 0.064, allicin and control respectively) and the expressions of angiotensin-converting enzyme II and angiotensin II type 1 receptor in lung tissue were maintained at normal control levels with allicin. In PAH rats treated with allicin, nitric oxide (NO) (31.72 ± 1.22 and 51.4 ± 3.45 pmoles/mL), tetrahydrobiopterin (8.43 ± 0.33 and 10.14 ± 0.70 pmoles/mL), cyclic guanosine monophosphate (5.54 ± 0.42 and 5.64 ± 0.73 pmoles/mL), and Ang-(1-7) (0.88 ± 0.23 and 0.83 ± 0.056 pmoles/mL) concentrations increased in lung tissue and plasma, respectively. In contrast, dihydrobiopterin increase was prevented in both lung tissue and plasma (5.75 ± 0.3 and 5.64 ± 0.73 pmoles/mL); meanwhile, phosphodiesterase-5 was maintained at normal levels in lung tissue. OS in PAH was prevented with allicin through the increased expression of Nrf2 in the lung. Allicin prevented the lung response to hypoxia, preventing the overexpression of HIF-1α and VEGF. Allicin attenuated the vascular remodeling and RV hypertrophy in PAH through its effects on NO-dependent vasodilation, modulation of RAS, and amelioration of OS. Also, these effects could be associated with the modulation of HIF-1α and improved lung oxygenation. The global effects of allicin contribute to preventing endothelial dysfunction, remodeling of the pulmonary arteries, and RV hypertrophy, preventing heart failure, thus favoring survival. Although human studies are needed, the data suggest that, alone or in combination therapy, allicin may be an alternative in treating PAH if we consider that, similarly to current treatments, it improves lung vasodilation and increase survival. Allicin may be considered an option when there is a lack of efficacy, and where drug intolerance is observed, to enhance the efficacy of drugs, or when more than one pathogenic mechanism must be addressed

    A Role for Both V1a and V2 Receptors in Renal Heat Stress Injury Amplified by Rehydration with Fructose

    No full text
    Chronic vasopressin secretion induced by recurrent mild heat stress exposure is significantly enhanced by limited rehydration with a fructose-containing beverage both in rodents and in humans. Moreover, this effect has been associated with upregulation of the polyol–fructokinase pathway and increased renal oxidative stress. Previously, we have shown that pharmacological inhibition of both V1a and V2 vasopressin receptors with conivaptan improved such renal alterations. The aim of this study was to evaluate the independent contributions of V1a and V2 receptors to the renal damage caused by mild heat stress and limited rehydration with a fructose-containing beverage. Osmotic minipumps were used to deliver either relcovaptan (0.64 mg/day) or tolvaptan (0.25 mg/day) in male Wistar rats for two weeks. Corresponding dilution vehicles were used as controls. To induce dehydration, rats were exposed to mild heat stress (37 °C for 1 h, Monday to Friday). All groups received a 10% fructose solution as a rehydration fluid for 2 h after mild heat stress. For the remainder of the day and on weekends, rats received tap water. The independent blockade of either the V1a or the V2 receptor prevented renal damage, reduced oxidative stress, and decreased plasma cortisol and systemic inflammation. However, the beneficial effects were regulated by different mechanisms. Tolvaptan inhibited polyol–fructokinase pathway overactivation, while relcovaptan prevented upregulation of the renin–angiotensin system and SGK1 expression. These data suggest that both V1a and V2 receptors participate in renal damage caused by heat stress-induced dehydration when fructose-containing beverages are used as rehydration fluids
    corecore