9 research outputs found

    Biosynthesis of arsenolipids by the cyanobacterium Synechocystis sp. PCC 6803

    Get PDF
    Although methylated arsenic and arsenosugars have been verified in various freshwater organisms, lipid-soluble arsenic compounds have not been identified. Here, we report investigations with the model organism cyanobacterium Synechocystis sp. PCC 6803 wild type and arsM (arsenic(III) S-adenosylmethionine methyltransferase) mutant strain, which lacks the enzymes for arsenic methylation cultured in various concentrations of arsenate (As-V). Although Synechocystis accumulated higher arsenic concentrations at the higher exposure levels, the bioaccumulation factor decreased with increasing As-V. The accumulated arsenic in the cells was partitioned into water-soluble and lipid-soluble fractions; lipid-soluble arsenic was found in Synechocystis wild type cells (3-35% of the total depending on the level of arsenic exposure), but was not detected in Synechocystis arsM mutant strain showing that ArsM was required for arsenolipid biosynthesis. The arsenolipids present in Synechocystis sp. PCC 6803 were analysed by high performance liquid chromatography-inductively coupled plasma-mass spectrometry, high performance liquid chromatography-electrospray mass spectrometry, and high resolution tandem mass spectrometry. The two major arsenolipids were characterised as arsenosugar phospholipids based on their assigned molecular formulas C47H88O14AsP and C47H90O14AsP, and tandem mass spectrometric data demonstrated the presence of the phosphate arsenosugar and acylated glycerol groups

    Genomic Structure of an Economically Important Cyanobacterium, Arthrospira (Spirulina) platensis NIES-39

    Get PDF
    A filamentous non-N2-fixing cyanobacterium, Arthrospira (Spirulina) platensis, is an important organism for industrial applications and as a food supply. Almost the complete genome of A. platensis NIES-39 was determined in this study. The genome structure of A. platensis is estimated to be a single, circular chromosome of 6.8 Mb, based on optical mapping. Annotation of this 6.7 Mb sequence yielded 6630 protein-coding genes as well as two sets of rRNA genes and 40 tRNA genes. Of the protein-coding genes, 78% are similar to those of other organisms; the remaining 22% are currently unknown. A total 612 kb of the genome comprise group II introns, insertion sequences and some repetitive elements. Group I introns are located in a protein-coding region. Abundant restriction-modification systems were determined. Unique features in the gene composition were noted, particularly in a large number of genes for adenylate cyclase and haemolysin-like Ca2+-binding proteins and in chemotaxis proteins. Filament-specific genes were highlighted by comparative genomic analysis

    Identification of histidine kinases that act as sensors in the perception of salt stress in Synechocystis sp. PCC 6803

    No full text
    In plants and microorganisms, salt stress regulates the expression of large numbers of genes. However, the machinery that senses salt stress remains to be characterized. In this study we identified sensory histidine kinases that are involved in the perception of salt stress in the cyanobacterium Synechocystis sp. strain PCC 6803. A library of strains with mutations in all 43 histidine kinases was screened by DNA microarray analysis of genomewide gene expression under salt stress. The results suggested that four histidine kinases, namely, Hik16, Hik33, Hik34, and Hik41, perceived and transduced salt signals. However, Hik33, Hik34, and Hik16 acting with Hik41 regulated the expression of different sets of genes. These histidine kinases regulated the expression of ≈20% of the salt-inducible genes, whereas the induction of the remaining salt-inducible genes was unaffected by mutations in any of the histidine kinases, suggesting that additional sensory mechanisms might operate in the perception of salt stress. We also used DNA microarrays to investigate the effect of various salts on gene expression. Our results indicate that Hik33 responds to sodium salts and not to KCl, whereas the Hik16/Hik41 system responds only to NaCl
    corecore