86 research outputs found

    Phosphorus supply affects long-term carbon accumulation in mid-latitude ombrotrophic peatlands

    Get PDF
    Ombrotrophic peatlands are a globally important carbon store and depend on atmospheric nutrient deposition to balance ecosystem productivity and microbial decomposition. Human activities have increased atmospheric nutrient fluxes, but the impacts of variability in phosphorus supply on carbon sequestration in ombrotrophic peatlands are unclear. Here, we synthesise phosphorus, nitrogen and carbon stoichiometric data in the surface and deeper layers of mid-latitude Sphagnum-dominated peatlands across Europe, North America and Chile. We find that long-term elevated phosphorus deposition and accumulation strongly correlate with increased organic matter decomposition and lower carbon accumulation in the catotelm. This contrasts with literature that finds short-term increases in phosphorus supply stimulates rapid carbon accumulation, suggesting phosphorus deposition imposes a threshold effect on net ecosystem productivity and carbon burial. We suggest phosphorus supply is an important, but overlooked, factor governing long-term carbon storage in ombrotrophic peatlands, raising the prospect that post-industrial phosphorus deposition may degrade this carbon sink

    Practical guidelines and recent advances in the Itrax XRF core-scanning procedure

    Get PDF
    XRF core scanning has evolved to become a standard analytical technique for the rapid assessment of elemental, density and textural variations in a wide range of sediments and other materials, with applications ranging from palaeoceanography, paleoclimatology, geology, and environmental forensics to environmental protection. In general, scanning provides rapid, non-destructive acquisition of elemental and textural variations at sub-millimetre resolution for a wide range of materials. Numerous procedural adaptations have been developed for the growing number of applications, such as analyses of unconsolidated, water-rich sediments, powdered soil samples, or resin bags. Here, practical expertise and guidance from the Itrax community, gained over 15 years, is presented that should provide insights for new and experienced users

    İzmir‐Ankara suture as a Triassic to Cretaceous plate boundary – data from central Anatolia

    Get PDF
    The Ä°zmir‐Ankara suture represents part of the boundary between Laurasia and Gondwana along which a wide Tethyan ocean was subducted. In northwest Turkey, it is associated with distinct oceanic subduction‐accretion complexes of Late Triassic, Jurassic and Late Cretaceous ages. The Late Triassic and Jurassic accretion complexes consist predominantly of basalt with lesser amounts of shale, limestone, chert, Permian (274 Ma zircon U‐Pb age) metagabbro and serpentinite, which have undergone greenschist facies metamorphism. Ar‐Ar muscovite ages from the phyllites range from 210 Ma down to 145 Ma with a broad southward younging. The Late Cretaceous subduction‐accretion complex, the ophiolitic mĂ©lange, consists of basalt, radiolarian chert, shale and minor amounts of recrystallized limestone, serpentinite and greywacke, showing various degrees of blueschist facies metamorphism and penetrative deformation. Ar‐Ar phengite ages from two blueschist metabasites are ca. 80 Ma (Campanian). The ophiolitic mĂ©lange includes large Jurassic peridotite‐gabbro bodies with plagiogranites with ca. 180 Ma U‐Pb zircon ages. Geochronological and geological data show that Permian to Cretaceous oceanic lithosphere was subducted north under the Pontides from the Late Triassic to the Late Cretaceous. This period was characterized generally by subduction‐accretion, except in the Early Cretaceous, when subduction‐erosion took place. In the Sakarya segment all the subduction accretion complexes, as well as the adjacent continental sequences, are unconformably overlain by Lower Eocene red beds. This, along with the stratigraphy of the Sakarya Zone indicate that the hard collision between the Sakarya Zone and the Anatolide‐Tauride Block took place in Paleocene

    Regional variability in peatland burning at mid- to high-latitudes during the Holocene

    Get PDF
    Acknowledgements This work developed from the PAGES (Past Global Changes) C-PEAT (Carbon in Peat on EArth through Time) working group. PAGES has been supported by the US National Science Foundation, Swiss National Science Foundation, Swiss Academy of Sciences and Chinese Academy of Sciences. We acknowledge the following financial support: UK Natural Environment Research Council Training Grants NE/L002574/1 (T.G.S.) and NE/S007458/1 (R.E.F.); Dutch Foundation for the Conservation of Irish Bogs, Quaternary Research Association and Leverhulme Trust RPG-2021-354 (G.T.S); the Academy of Finland (M.V); PAI/SIA 80002 and FONDECYT IniciaciĂłn 11220705 - ANID, Chile (C.A.M.); R20F0002 (PATSER) ANID Chile (R.D.M.); Swedish Strategic Research Area (SRA) MERGE (ModElling the Regional and Global Earth system) (M.J.G.); Polish National Science Centre Grant number NCN 2018/29/B/ST10/00120 (K.A.); Russian Science Foundation Grant No. 19-14-00102 (Y.A.M.); University of Latvia Grant No. AAp2016/B041/Zd2016/AZ03 and the Estonian Science Council grant PRG323 (TrackLag) (N.S. and A.M.); U.S. Geological Survey Land Change Science/Climate Research & Development Program (M.J., L.A., and D.W.); German Research Foundation (DFG), grant MA 8083/2-1 (P.M.) and grant BL 563/19-1 (K.H.K.); German Academic Exchange Service (DAAD), grant no. 57044554, Faculty of Geosciences, University of MĂŒnster, and Bavarian University Centre for Latin America (BAYLAT) (K.H.K). Records from the Global Charcoal Database supplemented this work and therefore we would like to thank the contributors and managers of this open-source resource. We also thank Annica Greisman, Jennifer Shiller, Fredrik Olsson and Simon van Bellen for contributing charcoal data to our analyses. Any use of trade, firm, or product name is for descriptive purposes only and does not imply endorsement by the U.S. Government.Peer reviewedPostprin

    Regional variability in peatland burning at mid-to high-latitudes during the Holocene

    Get PDF
    Northern peatlands store globally-important amounts of carbon in the form of partly decomposed plant detritus. Drying associated with climate and land-use change may lead to increased fire frequency and severity in peatlands and the rapid loss of carbon to the atmosphere. However, our understanding of the patterns and drivers of peatland burning on an appropriate decadal to millennial timescale relies heavily on individual site-based reconstructions. For the first time, we synthesise peatland macrocharcoal records from across North America, Europe, and Patagonia to reveal regional variation in peatland burning during the Holocene. We used an existing database of proximal sedimentary charcoal to represent regional burning trends in the wider landscape for each region. Long-term trends in peatland burning appear to be largely climate driven, with human activities likely having an increasing influence in the late Holocene. Warmer conditions during the Holocene Thermal Maximum (∌9–6 cal. ka BP) were associated with greater peatland burning in North America's Atlantic coast, southern Scandinavia and the Baltics, and Patagonia. Since the Little Ice Age, peatland burning has declined across North America and in some areas of Europe. This decline is mirrored by a decrease in wider landscape burning in some, but not all sub-regions, linked to fire-suppression policies, and landscape fragmentation caused by agricultural expansion. Peatlands demonstrate lower susceptibility to burning than the wider landscape in several instances, probably because of autogenic processes that maintain high levels of near-surface wetness even during drought. Nonetheless, widespread drying and degradation of peatlands, particularly in Europe, has likely increased their vulnerability to burning in recent centuries. Consequently, peatland restoration efforts are important to mitigate the risk of peatland fire under a changing climate. Finally, we make recommendations for future research to improve our understanding of the controls on peatland fires

    Global Boundary Stratotype Section and Point (GSSP) for the Anthropocene Series: Where and how to look for potential candidates

    Get PDF
    International audienc
    • 

    corecore