5 research outputs found

    Accelerated increase in plant species richness on mountain summits is linked to warming

    No full text
    We thank D. Barolin, J. Birks, A. Björken, C. Björken, S. Dahle, U. Deppe, G. Dussassois, J. V. Ferrández, T. Gassner, S. Giovanettina, F. Giuntoli, Ø. Lunde Heggebø, K. Herz, A. Jost, K. Kallnik, W. Kapfer, T. Kronstad, H. Laukeland, S. Nießner, M. Olson, P. Roux-Fouillet, K. Schofield, M. Suen, D. Watson, J. Wells Abbott, J. Zaremba and numerous additional helpers for fieldwork support; P. Barancˇ ok, J. L. Benito Alonso, M. Camenisch, G. Coldea, J. Dick, M. Gottfried, G. Grabherr, J. I. Holten, J. Kollár, P. Larsson, M. Mallaun, O. Michelsen, U. Molau, M. Pus¸  cas¸ , T. Scheurer, P. Unterluggauer, L. Villar, G.-R. Walther, and numerous helpers for data originating from the GLORIA network13; C. Jenks for linguistic support; and the following institutions for funding. M.J.S.: Danish Carlsbergfondet (CF14-0148), EU Marie Sklodowska-Curie action (grant 707491). C.R., V.S., S.W.: Velux Foundation, Switzerland. C.R., V.S., S.W., J.-P.T., P.V.: Swiss Federal Office for the Environment (FOEN). A.K.: Swiss National Science Foundation (31003A_144011 to C.R.), Basler Stiftung für biologische Forschung, Switzerland. J.K.: Fram Centre, Norway (362202). J.K., J.-A.G., P.C., B.J.: Polish-Norwegian Research Programme of the Norwegian National Centre for Research and Development (Pol-Nor/196829/87/2013). O.F.-A., M.J.H., S.P.: Instituto de Estudios Altoaragoneses (Huesca, Spain). S.D.: Austrian Climate Research Programme (ACRP, project 368575: DISEQU-ALP). F.J.: Botanical Society of Britain & Ireland; Alpine Garden Society, UK. M.J.H.: Felix de Azara research grant (IBERSUMIT project, DPH, Spain). R.K.: Slovak Research and Development Agency (APVV 0866-12). S.N., D.G.: VILLUM Foundation’s Young Investigator Programme (VKR023456; Denmark). S.P.: Ramón y Cajal fellowship (RYC-2013-14164, Ministerio de Economía y Competitividad, Spain). J.-C.S.: European Research Council (ERC-2012-StG-310886-HISTFUNC); VILLUM Investigator project (VILLUM FONDEN grant 16549; Denmark). S.W.: WSL internal grant (201307N0678, Switzerland); EU FP7 Interact Transnational Access (AlpFlor Europe). S.W., S.B., F.J., M.J.H.: Swiss Botanical Society Alpine Flower Fund. Time and effort was supported by sDiv, the Synthesis Centre of iDiv, Germany (DFG FZT 118, sUMMITDiv working group).Peer reviewedPostprin

    Plant functional trait change across a warming tundra biome

    Get PDF
    The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature–trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming

    Plant functional trait change across a warming tundra biome

    No full text
    Altres ajuts europeus: P.A.W. was additionally supported by the European Union Fourth Environment and Climate Framework Programme (Project Number ENV4-CT970586)P.A.W. was additionally supported by the European Union Fourth Environment and Climate Framework Programme (Project Number ENV4-CT970586).The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature-trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming
    corecore