22 research outputs found

    Identification of bacterial and fungal components in tobacco and tobacco smoke

    Get PDF
    The microbiological composition of tobacco products was studied using culture and chemical analysis (of tobacco leaves) or chemical analysis only (tobacco and tobacco smoke). The chemical analyses utilized gas chromatography-tandem mass spectrometry for determining 3-hydroxy fatty acids, muramic acid, and ergosterol as markers of respectively lipopolysaccharide (LPS), peptidoglycan, and fungal biomass. Mesophilic bacteria dominated in both fresh and cured tobacco leaves; a range of additional bacteria and fungi were also found albeit in minor amounts. The peptidoglycan and LPS concentrations were approximately the same in tobacco leaves as in cigarette tobacco. The concentrations of the measured microbial components were much lower in some cigarettes locally produced in China, Korea, and Vietnam than in cigarettes of international brands purchased in the same countries, and the concentrations in the smoke were in general agreement with the concentrations in cigarette tobacco. No differences in microbial load in tobacco of "light" and "full flavor" cigarettes were seen. Storing cigarettes at high humidity resulted in elevated levels of fungi in the cigarette tobacco leading to increased ergosterol concentrations in the smoke. The fact that tobacco smoke is a bioaerosol may help to explain the high prevalence of respiratory disorders among smokers and non-smokers exposed to second hand smoke since the same symptoms are also commonly associated with exposure to bioaerosols

    Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed

    Get PDF
    Deoxynivalenol (DON) is a mycotoxin primarily produced by Fusarium fungi, occurring predominantly in cereal grains. Following the request of the European Commission, the CONTAM Panel assessed the risk to animal and human health related to DON, 3-acetyl-DON (3-Ac-DON), 15-acetyl-DON (15-Ac-DON) and DON-3-glucoside in food and feed. A total of 27,537, 13,892, 7,270 and 2,266 analytical data for DON, 3-Ac-DON, 15-Ac-DON and DON-3-glucoside, respectively, in food, feed and unprocessed grains collected from 2007 to 2014 were used. For human exposure, grains and grain-based products were main sources, whereas in farm and companion animals, cereal grains, cereal by-products and forage maize contributed most. DON is rapidly absorbed, distributed, and excreted. Since 3-Ac-DON and 15-Ac-DON are largely deacetylated and DON-3-glucoside cleaved in the intestines the same toxic effects as DON can be expected. The TDI of 1 ÎŒg/kg bw per day, that was established for DON based on reduced body weight gain in mice, was therefore used as a group-TDI for the sum of DON, 3-Ac-DON, 15-Ac-DON and DON-3-glucoside. In order to assess acute human health risk, epidemiological data from mycotoxicoses were assessed and a group-ARfD of 8 ÎŒg/kg bw per eating occasion was calculated. Estimates of acute dietary exposures were below this dose and did not raise a health concern in humans. The estimated mean chronic dietary exposure was above the group-TDI in infants, toddlers and other children, and at high exposure also in adolescents and adults, indicating a potential health concern. Based on estimated mean dietary concentrations in ruminants, poultry, rabbits, dogs and cats, most farmed fish species and horses, adverse effects are not expected. At the high dietary concentrations, there is a potential risk for chronic adverse effects in pigs and fish and for acute adverse effects in cats and farmed mink

    Fungal exposure in agricultural environments: a review

    No full text
    Fungi can be easily found in agriculture environments due to the good growing conditions that are provided by the raw materials present in this environment and for its storage temperatures. Due to the daily activities, organic dust is present in these occupational environments, creating the optimal conditions for occupational exposure by the inhalation route. This study was employed a review method regarding the fungal exposure in agricultural environments reported between 2000 and 2019. The exclusive use of active sampling was found in 10 out of the 18 studies and the most common assay was the culture based-methods allowing morphological identification. Aspergillus was the most common genera found, while Alternaria alternata was the species more frequently described. This study raises concerns about occupational exposure to fungi on agriculture environments due to the high concentrations of organic dust and highlights the importance to use more than one sampling and assay methods to have an accurate exposure assessment.info:eu-repo/semantics/publishedVersio
    corecore