1,178 research outputs found

    Memory effects in annealed hybrid gold nanoparticles/block copolymer bilayers

    Get PDF
    We report on the use of the self-organization process of sputtered gold nanoparticles on a self-assembled block copolymer film deposited by horizontal precipitation Langmuir-Blodgett (HP-LB) method. The morphology and the phase-separation of a film of poly-n-butylacrylate-block-polyacrylic acid (PnBuA-b-PAA) were studied at the nanometric scale by using atomic force microscopy (AFM) and Time of Flight Secondary Ion Mass Spectrometry (TOF-SIMS). The templating capability of the PnBuA-b-PAA phase-separated film was studied by sputtering gold nanoparticles (NPs), forming a film of nanometric thickness. The effect of the polymer chain mobility onto the organization of gold nanoparticle layer was assessed by heating the obtained hybrid PnBuA-b-PAA/Au NPs bilayer at T >Tg. The nanoparticles' distribution onto the different copolymer domains was found strongly affected by the annealing treatment, showing a peculiar memory effect, which modifies the AFM phase response of the Au NPs layer onto the polar domains, without affecting their surfacial composition. The effect is discussed in terms of the peculiar morphological features induced by enhanced mobility of polymer chains on the Au NPs layer

    11β-Hydroxysteroid dehydrogenase type 1 inhibition in idiopathic intracranial hypertension: a double-blind randomized controlled trial

    Get PDF
    Treatment options for idiopathic intracranial hypertension are limited. The enzyme 11β-hydroxysteroid dehydrogenase type 1 has been implicated in regulating cerebrospinal fluid secretion, and its activity is associated with alterations in intracranial pressure in idiopathic intracranial hypertension. We assessed therapeutic efficacy, safety and tolerability and investigated indicators of in vivo efficacy of the 11β-hydroxysteroid dehydrogenase type 1 inhibitor AZD4017 compared with placebo in idiopathic intracranial hypertension. A multicenter, UK, 16-week phase II randomized, double-blind, placebo-controlled trial of 12-week treatment with AZD4017 or placebo was conducted. Women aged 18–55 years with active idiopathic intracranial hypertension (>25 cmH2O lumbar puncture opening pressure and active papilledema) were included. Participants received 400 mg of oral AZD4017 twice daily compared with matching placebo over 12 weeks. The outcome measures were initial efficacy, safety and tolerability. The primary clinical outcome was lumbar puncture opening pressure at 12 weeks analysed by intention-to-treat. Secondary clinical outcomes were symptoms, visual function, papilledema, headache and anthropometric measures. In vivo efficacy was evaluated in the central nervous system and systemically. A total of 31 subjects [mean age 31.2 (SD = 6.9) years and body mass index 39.2 (SD = 12.6) kg/m2] were randomized to AZD4017 (n = 17) or placebo (n = 14). At 12 weeks, lumbar puncture pressure was lower in the AZD4017 group (29.7 cmH2O) compared with placebo (31.3 cmH2O), but the difference between groups was not statistically significant (mean difference: −2.8, 95% confidence interval: −7.1 to 1.5; P = 0.2). An exploratory analysis assessing mean change in lumbar puncture pressure within each group found a significant decrease in the AZD4017 group [mean change: −4.3 cmH2O (SD = 5.7); P = 0.009] but not in the placebo group [mean change: −0.3 cmH2O (SD = 5.9); P = 0.8]. AZD4017 was safe, with no withdrawals related to adverse effects. Nine transient drug-related adverse events were reported. One serious adverse event occurred in the placebo group (deterioration requiring shunt surgery). In vivo biomarkers of 11β-hydroxysteroid dehydrogenase type 1 activity (urinary glucocorticoid metabolites, hepatic prednisolone generation, serum and cerebrospinal fluid cortisol:cortisone ratios) demonstrated significant enzyme inhibition with the reduction in serum cortisol:cortisone ratio correlating significantly with reduction in lumbar puncture pressure (P = 0.005, R = 0.70). This is the first phase II randomized controlled trial in idiopathic intracranial hypertension evaluating a novel therapeutic target. AZD4017 was safe and well tolerated and inhibited 11β-hydroxysteroid dehydrogenase type 1 activity in vivo. Reduction in serum cortisol:cortisone correlated with decreased intracranial pressure. Possible clinical benefits were noted in this small cohort. A longer, larger study would now be of interest

    A hippocampal circuit linking dorsal CA2 to ventral CA1 critical for social memory dynamics

    Get PDF
    Recent results suggest that social memory requires the dorsal hippocampal CA2 region as well as a subset of ventral CA1 neurons. However, it is unclear whether dorsal CA2 and ventral CA1 represent parallel or sequential circuits. Moreover, because evidence implicating CA2 in social memory comes largely from long-term inactivation experiments, the dynamic role of CA2 in social memory remains unclear. Here, we use pharmacogenetics and optogenetics in mice to acutely and reversibly silence dorsal CA2 and its projections to ventral hippocampus. We show that dorsal CA2 activity is critical for encoding, consolidation, and recall phases of social memory. Moreover, dorsal CA2 contributes to social memory by providing strong excitatory input to the same subregion of ventral CA1 that contains the subset of neurons implicated in social memory. Thus, our studies provide new insights into a dorsal CA2 to ventral CA1 circuit whose dynamic activity is necessary for social memory.We thank David H. Brann and the other members of the Siegelbaum laboratory for helpful discussions and João Cerqueira for critical input. This work was supported by R01 MH104602 and R01 MH106629 from the NIH (S.A.S.), by PD/BD/113700/2015 from the Portuguese Foundation for Science and Technology (T.M.) and by the European Molecular Biology Organization (A.O.)

    Reduced expression of glucocorticoid-inducible genes GILZ and SGK-1: high IL-6 levels are associated with reduced hippocampal volumes in major depressive disorder

    Get PDF
    Neuroplasticity may have a core role in the pathophysiology of major depressive disorder (MDD), a concept supported by experimental studies that found that excessive cortisol secretion and/or excessive production of inflammatory cytokines impairs neuronal plasticity and neurogenesis in the hippocampus. The objective of this study was to examine how changes in the glucocorticoid and inflammatory systems may affect hippocampal volumes in MDD. A multimodal approach with structural neuroimaging of hippocampus and amygdala, measurement of peripheral inflammatory proteins interleukin (IL)-6 and C-reactive protein (CRP), glucocorticoid receptor (GR) mRNA expression, and expression of glucocorticoid-inducible genes (glucocorticoid-inducible genes Leucin Zipper (GILZ) and glucocorticoid-inducible kinase-1 (SGK-1)) was used in 40 patients with MDD and 43 healthy controls (HC). Patients with MDD showed smaller hippocampal volumes and increased inflammatory proteins IL-6 and CRP compared with HC. Childhood maltreatment was associated with increased CRP. Patients with MDD, who had less expression of the glucocorticoid-inducible genes GILZ or SGK-1 had smaller hippocampal volumes. Regression analysis showed a strong positive effect of GILZ and SGK-1 mRNA expression, and further inverse effects of IL-6 concentration, on hippocampal volumes. These findings suggest that childhood maltreatment, peripheral inflammatory and glucocorticoid markers and hippocampal volume are interrelated factors in the pathophysiology of MDD. Glucocorticoid-inducible genes GILZ and SGK-1 might be promising candidate markers for hippocampal volume changes relevant for diseases like MDD. Further studies need to explore the possible clinical usefulness of such a blood biomarker, for example, for diagnosis or prediction of therapy response

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Pregnancy Outcome and Placenta Pathology in Plasmodium berghei ANKA Infected Mice Reproduce the Pathogenesis of Severe Malaria in Pregnant Women

    Get PDF
    Pregnancy-associated malaria (PAM) is expressed in a range of clinical complications that include increased disease severity in pregnant women, decreased fetal viability, intra-uterine growth retardation, low birth weight and infant mortality. The physiopathology of malaria in pregnancy is difficult to scrutinize and attempts were made in the past to use animal models for pregnancy malaria studies. Here, we describe a comprehensive mouse experimental model that recapitulates many of the pathological and clinical features typical of human severe malaria in pregnancy. We used P. berghei ANKA-GFP infection during pregnancy to evoke a prominent inflammatory response in the placenta that entails CD11b mononuclear infiltration, up-regulation of MIP-1 alpha chemokine and is associated with marked reduction of placental vascular spaces. Placenta pathology was associated with decreased fetal viability, intra-uterine growth retardation, gross post-natal growth impairment and increased disease severity in pregnant females. Moreover, we provide evidence that CSA and HA, known to mediate P. falciparum adhesion to human placenta, are also involved in mouse placental malaria infection. We propose that reduction of maternal blood flow in the placenta is a key pathogenic factor in murine pregnancy malaria and we hypothesize that exacerbated innate inflammatory responses to Plasmodium infected red blood cells trigger severe placenta pathology. This experimental model provides an opportunity to identify cell and molecular components of severe PAM pathogenesis and to investigate the inflammatory response that leads to the observed fetal and placental blood circulation abnormalities

    The role of virulence factors in the outcome of staphylococcal peritonitis in CAPD patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Peritonitis continues to be the most frequent cause of peritoneal dialysis (PD) failure, with an important impact on patient mortality. Gram-positive cocci such as <it>Staphylococcus epidermidis</it>, other coagulase-negative staphylococci (CoNS), and <it>Staphylococcus aureus </it>are the most frequent etiological agents of PD-associated peritonitis worldwide. The objective of the present study was to compare peritonitis caused by <it>S. aureus </it>and CoNS and to evaluate the factors influencing outcome.</p> <p>Methods</p> <p>Records of 86 new episodes of staphylococcal peritonitis that occurred between 1996 and 2000 in the Dialysis unit of a single university hospital were studied (35 due to <it>S. aureus</it>, 24 to <it>S. epidermidis </it>and 27 to other CoNS). The production of slime, lipase, lecithinase, nuclease (DNAse), thermonuclease (TNAse), α- and β-hemolysin, enterotoxins (SEA, SEB, SEC, SED) and toxic shock syndrome toxin-1 (TSST-1) was studied in <it>S. aureus </it>and CoNS. Antimicrobial susceptibility was evaluated based on the minimal inhibitory concentration determined by the E-test. Outcome predictors were evaluated by two logistic regression models.</p> <p>Results</p> <p>The oxacillin susceptibility rate was 85.7% for <it>S. aureus</it>, 41.6% for <it>S. epidermidis</it>, and 51.8% for other CoNS (p = 0.001). Production of toxins and enzymes, except for enterotoxin A and α-hemolysin, was associated with <it>S. aureus </it>episodes (p < 0.001), whereas slime production was positive in 23.5% of CoNS and 8.6% of <it>S. aureus </it>strains (p = 0.0047). The first model did not include enzymes and toxins due to their association with <it>S. aureus</it>. The odds of resolution were 9.5 times higher for <it>S. epidermidis </it>than for <it>S. aureus </it>(p = 0.02) episodes, and were similar for <it>S. epidermidis </it>and other CoNS (p = 0.8). The resolution odds were 68 times higher for non-slime producers (p = 0.001) and were not influenced by oxacillin resistance among vancomycin-treated cases (p = 0.89). In the second model, the resolution rate was similar for <it>S. aureus </it>and <it>S. epidermidis </it>(p = 0.70), and slime (p = 0.001) and α-hemolysin (p = 0.04) production were independent predictors of non-resolution.</p> <p>Conclusion</p> <p>Bacterial species and virulence factors rather than antibiotic resistance influence the outcome of staphylococcal peritonitis.</p
    corecore