17 research outputs found
Congenital dyserythropoiesis and polymyopathy without cardiac disease in male Labrador retriever littermates.
BACKGROUND: Two Labrador retriever littermates were identified based on incidentally noted marked microcytosis and inappropriate metarubricytosis. Muscle atrophy was noted and associated with distinctive pathological findings in biopsy samples from 1 dog studied. The disorder represents a rare clinical entity of suspected congenital dyserythropoiesis and polymyopathy. Clinicopathologic changes were similar to a previously reported syndrome of congenital dyserythropoiesis, congenital polymyopathy, and cardiac disease in 3 related English Springer Spaniel (ESS) dogs, but the dogs reported here did not have apparent cardiac disease. INTERVENTIONS: Bone marrow aspiration, electromyography, muscle biopsies, and an echocardiogram were performed on dog 1. Results supported dyserythropoiesis and congenital polymyopathy similar to reports in ESS dogs, but did not identify obvious cardiac disease. CONCLUSION: The clinicopathologic changes of dyserythropoiesis and polymyopathy provide an easily recognizable phenotype for what appears to be a low morbidity syndrome. Early recognition may decrease unnecessary testing or euthanasia
First upper limits from LIGO on gravitational wave bursts
We report on a search for gravitational wave bursts using data from the first
science run of the LIGO detectors. Our search focuses on bursts with durations
ranging from 4 ms to 100 ms, and with significant power in the LIGO sensitivity
band of 150 to 3000 Hz. We bound the rate for such detected bursts at less than
1.6 events per day at 90% confidence level. This result is interpreted in terms
of the detection efficiency for ad hoc waveforms (Gaussians and sine-Gaussians)
as a function of their root-sum-square strain h_{rss}; typical sensitivities
lie in the range h_{rss} ~ 10^{-19} - 10^{-17} strain/rtHz, depending on
waveform. We discuss improvements in the search method that will be applied to
future science data from LIGO and other gravitational wave detectors.Comment: 21 pages, 15 figures, accepted by Phys Rev D. Fixed a few small typos
and updated a few reference
Detector Description and Performance for the First Coincidence Observations between LIGO and GEO
For 17 days in August and September 2002, the LIGO and GEO interferometer
gravitational wave detectors were operated in coincidence to produce their
first data for scientific analysis. Although the detectors were still far from
their design sensitivity levels, the data can be used to place better upper
limits on the flux of gravitational waves incident on the earth than previous
direct measurements. This paper describes the instruments and the data in some
detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial
change
All-sky search for long-duration gravitational wave transients with initial LIGO
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10–500 s in a frequency band of 40–1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10−5 and 9.4×10−4 Mpc−3 yr−1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves
Multimessenger Search for Sources of Gravitational Waves and High-Energy Neutrinos: Results for Initial LIGO-Virgo and IceCube
We report the results of a multimessenger search for coincident signals from
the LIGO and Virgo gravitational-wave observatories and the partially completed
IceCube high-energy neutrino detector, including periods of joint operation
between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010
run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79
strings. We find no significant coincident events, and use the search results
to derive upper limits on the rate of joint sources for a range of source
emission parameters. For the optimistic assumption of gravitational-wave
emission energy of \,Mc at \,Hz with \,ms duration, and high-energy neutrino emission of \,erg
comparable to the isotropic gamma-ray energy of gamma-ray bursts, we limit the
source rate below \,Mpcyr. We also examine
how combining information from gravitational waves and neutrinos will aid
discovery in the advanced gravitational-wave detector era
Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors
Paper producido por "The LIGO Scientific Collaboration and the Virgo Collaboration". (En el registro se mencionan solo algunos autores de las decenas de personas que participan).In this paper we report on a search for short-duration gravitational wave bursts in the frequency range 64 Hz–1792 Hz associated with gamma-ray bursts (GRBs), using data from GEO 600 and one of the LIGO or Virgo detectors. We introduce the method of a linear search grid to analyze GRB events with large sky localization uncertainties, for example the localizations provided by the Fermi Gamma-ray Burst Monitor (GBM). Coherent searches for gravitational waves (GWs) can be computationally intensive when the GRB sky position is not well localized, due to the corrections required for the difference in arrival time between
detectors. Using a linear search grid we are able to reduce the computational cost of the analysis by a factor of Oð10Þfor GBM events. Furthermore, we demonstrate that our analysis pipeline can improve upon the sky localization of GRBs detected by the GBM, if a high-frequency GW signal is observed in coincidence. We use the method of the linear grid in a search for GWs associated with 129 GRBs observed satellite-based gamma-ray experiments between 2006 and 2011. The GRBs in our sample had not been previously analyzed for GW counterparts. A fraction of our GRB events are analyzed using data from GEO 600 while
the detector was using squeezed-light states to improve its sensitivity; this is the first search for GWs using data from a squeezed-light interferometric observatory. We find no evidence for GW signals, either with any individual GRB in this sample or with the population as a whole. For each GRB we place lower bounds on the distance to the progenitor, under an assumption of a fixed GWemission energy of 10−2M⊙c2, with a median exclusion distance of 0.8 Mpc for emission at 500 Hz and 0.3 Mpc at 1 kHz. The reduced computational cost associated with a linear search grid will enable rapid searches for GWs associated with
Fermi GBM events once the advanced LIGO and Virgo detectors begin operation.http://journals.aps.org/prd/abstract/10.1103/PhysRevD.89.122004publishedVersionFil: Aasi, J. LIGO. California Institute of Technology; Estados Unidos de América.Fil: Domínguez, E. Argentinian Gravitational Wave Group; Argentina.Fil: Maglione, C. Argentinian Gravitational Wave Group; Argentina.Fil: Reula, O. Argentinian Gravitational Wave Group; Argentina.Fil: Ortega, W. Argentinian Gravitational Wave Group; Argentina.Fil: Wolovick, N. Argentinian Gravitational Wave Group; Argentina.Fil: Schilman, M. Argentinian Gravitational Wave Group; Argentina.Física de Partículas y Campo
Observation of Gravitational Waves from a Binary Black Hole Merger
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave
Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in
frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 × 10−21. It matches the waveform
predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the
resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a
false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater
than 5.1σ. The source lies at a luminosity distance of 410þ160
−180 Mpc corresponding to a redshift z ¼ 0.09þ0.03 −0.04 .
In the source frame, the initial black hole masses are 36þ5
−4M⊙ and 29þ4
−4M⊙, and the final black hole mass is
62þ4
−4M⊙, with 3.0þ0.5 −0.5M⊙c2 radiated in gravitational waves. All uncertainties define 90% credible intervals.
These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct
detection of gravitational waves and the first observation of a binary black hole merger
An <i>EHPB1L1</i> Nonsense Mutation Associated with Congenital Dyserythropoietic Anemia and Polymyopathy in Labrador Retriever Littermates
In this report, we describe a novel genetic basis for congenital dyserythropoietic anemia and polymyopathy in Labrador Retriever littermates characterized by incidental detection of marked microcytosis, inappropriate metarubricytosis, pelvic limb weakness and muscle atrophy. A similar syndrome has been described in English Springer Spaniel littermates with an early onset of anemia, megaesophagus, generalized muscle atrophy and cardiomyopathy. Muscle histopathology in both breeds showed distinctive pathological changes consistent with congenital polymyopathy. Using whole genome sequencing and mapping to the CanFam4 (Canis lupus familiaris reference assembly 4), a nonsense variant in the EHBP1L1 gene was identified in a homozygous form in the Labrador Retriever littermates. The mutation produces a premature stop codon that deletes approximately 90% of the protein. This variant was not present in the English Springer Spaniels. Currently, EHPB1L1 is described as critical to actin cytoskeletal organization and apical-directed transport in polarized epithelial cells, and through connections with Rab8 and a BIN1-dynamin complex generates membrane vesicles in the endocytic recycling compartment. Furthermore, EHBP1L1 knockout mice die early and develop severe anemia. The connection of EHBP1L1 to BIN1 and DMN2 functions is particularly interesting due to BIN1 and DMN2 mutations being causative in forms of centronuclear myopathy. This report, along with an independent study conducted by another group, are the first reports of an association of EHBP1L1 mutations with congenital dyserythropoietic anemia and polymyopathy
Recommended from our members
Observation of gravitational waves from a binary black hole merger
Albert Einstein's general theory of relativity, first published a century ago, was described by physicist Max Born as "the greatest feat of human thinking about nature."We report on two major scientific breakthroughs involving key predictions of Einstein's theory: the first direct detection of gravitational waves and the first observation of the collision and merger of a pair of black holes. This cataclysmic event, producing the gravitational-wave signal GW150914, took place in a distant galaxy more than one billion light years from the Earth. It was observed on September 14, 2015 by the two detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO), arguably the most sensitive scientific instruments ever constructed. LIGO estimated that the peak gravitational-wave power radiated during the final moments of the black hole merger was more than ten times greater than the combined light power from all the stars and galaxies in the observable Universe. This remarkable discovery marks the beginning of an exciting new era of astronomy as we open an entirely new, gravitational-wave window on the Universe