193 research outputs found

    Autonomous xenogenic cell fusion of murine and chick skeletal muscle myoblasts

    Get PDF
    Cell-cell fusion has been a great technology to generate valuable hybrid cells and organisms such as hybridomas. In this study, skeletal muscle myoblasts were utilized to establish a novel method for autonomous xenogenic cell fusion. Myoblasts are mononuclear myogenic precursor cells and fuse mutually to form multinuclear myotubes. We generated murine myoblasts (mMBs) expressing green fluorescent protein (GFP) termed mMB-GFP, and the chick myoblasts (chMBs) expressing Discosoma red fluorescent protein (DsRed) termed chMB-DsRed. mMB-GFP and chMB-DsRed were cocultured and induced to differentiate. After 24h, the multinuclear myotubes expressing both GFP and DsRed were observed, indicating that mMBs and chMBs interspecifically fuse. These GFP(+)/DsRed(+) hybrid myotubes were able to survive and grew to hyper-multinucleated mature form. We also found that undifferentiated mMB-GFP efficiently fuse to the chMB-DsRed-derived myotubes. This is the first evidence for the autonomous xenogenic fusion of mammalian and avian cells. Myoblast-based fusogenic technique will open up an alternative direction to create novel hybrid products.ArticleANIMAL SCIENCE JOURNAL. 88(11):1880-1885 (2017)journal articl

    Evaluation and Diagnostic Potential of Serum Ghrelin in Feline Hypersomatotropism and Diabetes Mellitus

    Get PDF
    BACKGROUND: Ghrelin is a growth hormone secretagogue. It is a potent regulator of energy homeostasis. Ghrelin concentration is down‐regulated in humans with hypersomatotropism (HS) and increases after successful treatment. Additionally, ghrelin secretion seems impaired in human diabetes mellitus (DM). HYPOTHESIS: Serum ghrelin concentration is down‐regulated in cats with HS‐induced DM (HSDM) compared to healthy control cats or cats with DM unrelated to HS and increases after radiotherapy. ANIMALS: Cats with DM (n = 20) and with HSDM (n = 32), 13 of which underwent radiotherapy (RT‐group); age‐matched controls (n = 20). METHODS: Retrospective cross‐sectional study. Analytical performance of a serum total ghrelin ELISA was assessed and validated for use in cats. Differences in serum ghrelin, fructosamine, IGF‐1 and insulin were evaluated. RESULTS: Ghrelin was significantly higher (P < .001) in control cats (mean ± SD: 12.9 ± 6.8 ng/mL) compared to HSDM‐ (7.9 ± 3.3 ng/mL) and DM‐cats (6.7 ± 2.3 ng/mL), although not different between the HSDM‐ and DM‐cats. After RT ghrelin increased significantly (P = .003) in HSDM‐cats undergoing RT (from 6.6 ± 1.9 ng/mL to 9.0 ± 2.2 ng/mL) and the after RT ghrelin concentrations of HSDM cats were no longer significantly different from the serum ghrelin concentration of control cats. Serum IGF‐1 did not significantly change in HSDM‐cats after RT, despite significant decreases in fructosamine and insulin dose. CONCLUSION AND CLINICAL IMPORTANCE: Ghrelin appears suppressed in cats with DM and HSDM, although increases after RT in HSDM, suggesting possible presence of a direct or indirect negative feedback system between growth hormone and ghrelin. Serum ghrelin might therefore represent a marker of treatment effect

    Ghrelin Indirectly Activates Hypophysiotropic CRF Neurons in Rodents

    Get PDF
    Ghrelin is a stomach-derived hormone that regulates food intake and neuroendocrine function by acting on its receptor, GHSR (Growth Hormone Secretagogue Receptor). Recent evidence indicates that a key function of ghrelin is to signal stress to the brain. It has been suggested that one of the potential stress-related ghrelin targets is the CRF (Corticotropin-Releasing Factor)-producing neurons of the hypothalamic paraventricular nucleus, which secrete the CRF neuropeptide into the median eminence and activate the hypothalamic-pituitary-adrenal axis. However, the neural circuits that mediate the ghrelin-induced activation of this neuroendocrine axis are mostly uncharacterized. In the current study, we characterized in vivo the mechanism by which ghrelin activates the hypophysiotropic CRF neurons in mice. We found that peripheral or intra-cerebro-ventricular administration of ghrelin strongly activates c-fos – a marker of cellular activation – in CRF-producing neurons. Also, ghrelin activates CRF gene expression in the paraventricular nucleus of the hypothalamus and the hypothalamic-pituitary-adrenal axis at peripheral level. Ghrelin administration directly into the paraventricular nucleus of the hypothalamus also induces c-fos within the CRF-producing neurons and the hypothalamic-pituitary-adrenal axis, without any significant effect on the food intake. Interestingly, dual-label immunohistochemical analysis and ghrelin binding studies failed to show GHSR expression in CRF neurons. Thus, we conclude that ghrelin activates hypophysiotropic CRF neurons, albeit indirectly

    Diabetic gastroparesis: Therapeutic options

    Get PDF
    Gastroparesis is a condition characterized by delayed gastric emptying and the most common known underlying cause is diabetes mellitus. Symptoms include nausea, vomiting, abdominal fullness, and early satiety, which impact to varying degrees on the patient’s quality of life. Symptoms and deficits do not necessarily relate to each other, hence despite significant abnormalities in gastric emptying, some individuals have only minimal symptoms and, conversely, severe symptoms do not always relate to measures of gastric emptying. Prokinetic agents such as metoclopramide, domperidone, and erythromycin enhance gastric motility and have remained the mainstay of treatment for several decades, despite unwanted side effects and numerous drug interactions. Mechanical therapies such as endoscopic pyloric botulinum toxin injection, gastric electrical stimulation, and gastrostomy or jejunostomy are used in intractable diabetic gastroparesis (DG), refractory to prokinetic therapies. Mitemcinal and TZP-101 are novel investigational motilin receptor and ghrelin agonists, respectively, and show promise in the treatment of DG. The aim of this review is to provide an update on prokinetic and mechanical therapies in the treatment of DG

    Ghrelin

    Get PDF
    This work was supported by grants from the NIH (DP2DK105570-01 and 2P30DK046200 to MLA, DK21397 to HJG, K01DK098319 to KMH, K01MH091222 to LH, DK093848 to RJS, R01DK082590 to LS, R01DK097550 to JT, RO1 DK 076037 to MOT, R01DA024680 and R01MH085298 to JMZ, R01AG019230 and R01AG029740 to RGS) The Wellcome Trust (MK), Science Foundation Ireland (12/YI/B2480 to CWL), the Alexander von Humboldt Foundation (MHT), the Deutsches Zentrum für Diabetesforschung (MHT), the Helmholtz Alliance ICEMED e Imaging and Curing Environmental Metabolic Diseases, through the Initiative and Networking Fund of the Helmholtz Association (MHT), and the Helmholtz cross-program topic “Metabolic Dysfunction” (MHT). Allan Geliebter was sponsored by NIH grants R01DK80153; R01DK074046; R03DK068603; P30DK26687
    corecore