393 research outputs found

    VNbCrMo refractory high-entropy alloy for nuclear applications

    Get PDF
    Refractory high-entropy alloys (RHEAs) with high melting points and low neutron absorption cross-section are sought for generation-IV fission and fusion reactors. A high throughput computational screening tool, Alloy Search and Predict (ASAP), was used to identify promising RHEA candidates from over 1 million four-element equimolar combinations. The selected VNbCrMo RHEA was further studied by CALPHAD to predict phase formation, which was compared to an experimentally produced ingot aged at 1200 °C. The VNbCrMo RHEA was found to constitute a majority bcc phase, with a 6% area fraction of C15-Laves formed at interdendritic regions, in contrast to the predictions of single-phase. The prediction of the yield strength by a model based upon edge dislocation mechanisms indicated 2.1 GPa at room temperature and 850 MPa at 1000 °C for the equimolar single bcc phase. The hardness of the alloy with C15-Laves was 748 HV (yield strength ∼2.4 GPa). Finally, the macroscopic neutron absorption cross-section was modelled for a wide range of energies. Displacements per atom per year and activation calculations, up to 1000 years after 2 years of continuous operation, in typical fusion and fission reactor scenarios were also performed using the inventory code FISPACT-II. This work gives new insight into the phase stability and performance of the VNbCrMo RHEA, which is compared with a similar design concept alloy, to assess the potential of novel RHEAs for use in advanced nuclear applications.Fil: Ferreirós, Pedro Antonio. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: von Tiedemann, S. O.. The University Of Birmingham (tub);Fil: Parkes, N.. The University Of Birmingham (tub);Fil: Gurah, D.. The University Of Birmingham (tub);Fil: King, D. J. M.. Imperial College London; Reino UnidoFil: Norman, P.. The University Of Birmingham (tub);Fil: Gilbert, M. R.. The University Of Birmingham (tub);Fil: Knowles, A. J.. Imperial College London; Reino Unid

    Psychophysiological responses to visceral and somatic pain in functional chest pain identify clinically relevant pain clusters

    Get PDF
    Background: Despite chronic pain being a feature of functional chest pain (FCP) its experience is variable. The factors responsible for this variability remain unresolved. We aimed to address these knowledge gaps, hypothesizing that the psychophysiological profiles of FCP patients will be distinct from healthy subjects. Methods: 20 Rome III defined FCP patients (nine males, mean age 38.7 years, range 28-59 years) and 20 healthy age-, sex-, and ethnicity-matched controls (nine males, mean 38.2 years, range 24-49) had anxiety, depression, and personality traits measured. Subjects had sympathetic and parasympathetic nervous system parameters measured at baseline and continuously thereafter. Subjects received standardized somatic (nail bed pressure) and visceral (esophageal balloon distension) stimuli to pain tolerance. Venous blood was sampled for cortisol at baseline, post somatic pain and post visceral pain. Key Results: Patients had higher neuroticism, state and trait anxiety, and depression scores but lower extroversion scores vs controls (all p < 0.005). Patients tolerated less somatic (p < 0.0001) and visceral stimulus (p = 0.009) and had a higher cortisol at baseline, and following pain (all p < 0.001). At baseline, patients had a higher sympathetic tone (p = 0.04), whereas in response to pain they increased their parasympathetic tone (p ≤ 0.008). The amalgamating the data, we identified two psychophysiologically distinct 'pain clusters'. Patients were overrepresented in the cluster characterized by high neuroticism, trait anxiety, baseline cortisol, pain hypersensitivity, and parasympathetic response to pain (all p < 0.03). Conclusions & Inferences: In future, such delineations in FCP populations may facilitate individualization of treatment based on psychophysiological profiling

    Mental health trajectories in university students across the COVID-19 pandemic: findings from the Student Wellbeing at Northern England Universities prospective cohort study

    Get PDF
    Introduction: Psychological wellbeing in university students is receiving increased focus. However, to date, few longitudinal studies in this population have been conducted. As such, in 2019, we established the Student Wellbeing At Northern England Universities (SWANS) cohort at the University of York, United Kingdom aiming to measure student mental health and wellbeing every six months. Furthermore, the study period included the COVID-19 pandemic, giving an opportunity to track student wellbeing over time, including over the pandemic. Methods: Eligible participants were invited to participate via email. Data were collected, using Qualtrics, from September 2019 to April 2021, across five waves (W1 to W5). In total, n = 4,622 students participated in at least one wave of the survey. Data collection included sociodemographic, educational, personality measures, and mental health and wellbeing. Latent profile analyses were performed, exploring trajectories of student wellbeing over the study period for those who had completed at least three of the five waves of the survey (n = 765), as measured by the Warwick-Edinburgh Mental Wellbeing Scale (WEMWBS). Results: Five latent profile trajectories of student wellbeing were identified. Of these, the two latent classes with initially higher wellbeing scores had broadly stable wellbeing across time (total n = 505, 66%). Two classes had lower initial scores, which lowered further across time (total n = 227, 30%). Additionally, a fifth class of students was identified who improved substantially over the study period, from a mean WEMWBS of 30.4 at W1, to 49.4 at W5 (n = 33, 4%). Risk factors for having less favourable wellbeing trajectories generally included identifying as LGBT+, self-declaring a disability, or previously being diagnosed with a mental health condition. Conclusion: Our findings suggest a mixed picture of the effect of the COVID-19 pandemic on student wellbeing, with a majority showing broadly consistent levels of wellbeing across time, a smaller but still substantial group showing a worsening of wellbeing, and a small group that showed a very marked improvement in wellbeing. Those from groups traditionally underrepresented in higher education were most at risk of poorer wellbeing. This raises questions as to whether future support for wellbeing should target specific student subpopulations

    Complementary methods to investigate the development of clogging within a horizontal sub-surface flow tertiary treatment wetland

    Get PDF
    A combination of experimental methods was applied at a clogged, horizontal subsurface flow (HSSF) municipal wastewater tertiary treatment wetland (TW) in the UK, to quantify the extent of surface and subsurface clogging which had resulted in undesirable surface flow. The three dimensional hydraulic conductivity profile was determined, using a purpose made device which recreates the constant head permeameter test in-situ. The hydrodynamic pathways were investigated by performing dye tracing tests with Rhodamine WT and a novel multi-channel, data-logging, flow through Fluorimeter which allows synchronous measurements to be taken from a matrix of sampling points. Hydraulic conductivity varied in all planes, with the lowest measurement of 0.1 md1 corresponding to the surface layer at the inlet, and the maximum measurement of 1550 md1 located at a 0.4m depth at the outlet. According to dye tracing results, the region where the overland flow ceased received five times the average flow, which then vertically short-circuited below the rhizosphere. The tracer break-through curve obtained from the outlet showed that this preferential flow-path accounted for approximately 80% of the flow overall and arrived 8 h before a distinctly separate secondary flow-path. The overall volumetric efficiencyof the clogged system was 71% and the hydrology was simulated using a dual-path, dead-zone storage model. It is concluded that uneven inlet distribution, continuous surface loading and high rhizosphere resistance is responsible for the clog formation observed in this system. The average inlet hydraulic conductivity was 2 md1, suggesting that current European design guidelines, which predict that the system will reach an equilibrium hydraulic conductivity of 86 md1, do not adequately describe the hydrology of mature systems

    A systematic review of reviews identifying UK validated dietary assessment tools for inclusion on an interactive guided website for researchers: www.nutritools.org

    Get PDF
    Background: Health researchers may struggle to choose suitable validated dietary assessment tools (DATs) for their target population. The aim of this review was to identify and collate information on validated UK DATs and validation studies for inclusion on a website to support researchers to choose appropriate DATs. Design: A systematic review of reviews of DATs was undertaken. DATs validated in UK populations were extracted from the studies identified. A searchable website was designed to display these data. Additionally, mean differences and limits of agreement between test and comparison methods were summarized by a method, weighting by sample size. Results: Over 900 validation results covering 5 life stages, 18 nutrients, 6 dietary assessment methods, and 9 validation method types were extracted from 63 validated DATs which were identified from 68 reviews. These were incorporated into www.nutritools.org. Limits of agreement were determined for about half of validations. Thirty four DATs were FFQs. Only 17 DATs were validated against biomarkers, and only 19 DATs were validated in infant/children/adolescents. Conclusions: The interactive www.nutritools.org website holds extensive validation data identified from this review and can be used to guide researchers to critically compare and choose a suitable DAT for their research question, leading to improvement of nutritional epidemiology research

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    Determination of alphaS from Hadronic Event Shapes in e+e- Annihilation at 192 < sqrt(s) < 208 GeV

    Full text link
    Results are presented from a study of the structure of high energy hadronic events recorded by the L3 detector at sqrt(s)>192 GeV. The distributions of several event shape variables are compared to resummed O(alphaS^2) QCD calculations. We determine the strong coupling constant at three average centre-of-mass energies: 194.4, 200.2 and 206.2 GeV. These measurements, combined with previous L3 measurements at lower energies, demonstrate the running of alphaS as expected in QCD and yield alphaS(mZ) = 0.1227 +- 0.0012 +- 0.0058, where the first uncertainty is experimental and the second is theoretical

    Optically pumped Cs magnetometers enabling a high-sensitivity search for the neutron electric dipole moment

    Get PDF
    An array of 16 laser-pumped scalar Cs magnetometers was part of the neutron electric dipole moment (nEDM) experiment taking data at the Paul Scherrer Institute in 2015 and 2016. It was deployed to measure the gradients of the experiment's magnetic field and to monitor their temporal evolution. The originality of the array lies in its compact design, in which a single near-infrared diode laser drives all magnetometers that are located in a high-vacuum chamber, with a selection of the sensors mounted on a high-voltage electrode. We describe details of the Cs sensors' construction and modes of operation, emphasizing the accuracy and sensitivity of the magnetic-field readout. We present two applications of the magnetometer array directly beneficial to the nEDM experiment: (i) the implementation of a strategy to correct for the drift of the vertical magnetic-field gradient and (ii) a procedure to homogenize the magnetic field. The first reduces the uncertainty of the nEDM result. The second enables transverse neutron spin relaxation times exceeding 1500 s, improving the statistical sensitivity of the nEDM experiment by about 35% and effectively increasing the rate of nEDM data taking by a factor of 1.8

    A history of high-power laser research and development in the United Kingdom

    Get PDF
    The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years
    corecore