10 research outputs found

    The immune theory of psychiatric diseases: A key role for activated microglia and circulating monocytes

    No full text
    This review describes a key role for mononuclear phagocytes in the pathogenesis of major psychiatric disorders. There is accumulating evidence for activation of microglia (histopathology and PET scans) and circulating monocytes (enhanced gene expression of immune genes, an overproduction of monocyte/macro-phage-related cytokines) in patients with bipolar disorder, major depressive disorder, and schizophrenia. These data are strengthened by observations in animal models, such as the MIA models, the chronic stress models, and the NOD mouse model. In these animal models of depressive-, anxiety-, and schizophrenia-like behavior, similar activations of microglia and circulating monocytes can be found. These animal models also make in-depth pathogenic studies possible and show that microglia activation impacts neuronal development and function in brain areas congruent with the altered depressive and schizophrenia-like behaviors

    Literatur

    No full text

    “Astonishing successes” and “bitter disappointment”: The specific heat of hydrogen in quantum theory

    No full text
    The specific heat of hydrogen gas at low temperatures was first measured in 1912 by Arnold Eucken in Walther Nernst’s laboratory in Berlin, and provided one of the earliest experimental supports for the new quantum theory. Even earlier, Nernst had developed a quantum theory of rotating diatomic gas molecules that figured in the discussions at the first Solvay conference in late 1911. Between 1913 and 1925, Albert Einstein, Paul Ehrenfest, Max Planck, Fritz Reiche, and Erwin Schrödinger, among many others, attempted theoretical descriptions of the rotational specific heat of hydrogen, with only limited success. Quantum theory also was central to the study of molecular spectra, where initially it was more successful. Moreover, the two problems interacted in sometimes surprising ways. Not until 1927, following Werner Heisenberg’s discovery of the behavior of indistinguishable particles in modern quantum mechanics, did American theorist David Dennison find a successful theory of the specific heat of hydrogen

    LifeTime and improving European healthcare through cell-based interceptive medicine

    Get PDF
    LifeTime aims to track, understand and target human cells during the onset and progression of complex diseases and their response to therapy at single-cell resolution. This mission will be implemented through the development and integration of single-cell multi-omics and imaging, artificial intelligence and patient-derived experimental disease models during progression from health to disease. Analysis of such large molecular and clinical datasets will discover molecular mechanisms, create predictive computational models of disease progression, and reveal new drug targets and therapies. Timely detection and interception of disease embedded in an ethical and patient-centered vision will be achieved through interactions across academia, hospitals, patient-associations, health data management systems and industry. Applying this strategy to key medical challenges in cancer, neurological, infectious, chronic inflammatory and cardiovascular diseases at the single-cell level will usher in cell-based interceptive medicine in Europe over the next decade.We would like to acknowledge all participants that have attended and contributed to LifeTime meetings and workshops through many exciting presentations and discussions. We thank Johannes Richers for artwork. LifeTime has received funding from the European Unionʼs Horizon 2020 research and innovation framework programme under Grant agreement 820431

    “Astonishing Successes” and “Bitter Disappointment”: The Specific Heat of Hydrogen in Quantum Theory

    No full text

    Literatur

    No full text

    Deep-Inelastic inclusive ep Scattering at low x and a determination of αs\alpha s

    No full text

    B. Sprachwissenschaft

    No full text

    CMS physics technical design report: Addendum on high density QCD with heavy ions

    Get PDF
    This report presents the capabilities of the CMS experiment to explore the rich heavy-ion physics programme offered by the CERN Large Hadron Collider (LHC). The collisions of lead nuclei at energies ,will probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). This report covers in detail the potential of CMS to carry out a series of representative Pb-Pb measurements. These include "bulk" observables, (charged hadron multiplicity, low pT inclusive hadron identified spectra and elliptic flow) which provide information on the collective properties of the system, as well as perturbative probes such as quarkonia, heavy-quarks, jets and high pT hadrons which yield "tomographic" information of the hottest and densest phases of the reaction.0info:eu-repo/semantics/publishe
    corecore