1,061 research outputs found

    Family presence during resuscitation: Validation of the risk–benefit and self-confidence scales for student nurses

    Get PDF
    © 2016, © The Author(s) 2016. Background. There is increasing debate about the advantages and disadvantages of family-witnessed resuscitation. Research about the views of healthcare providers depends upon reliable tools to measure their perceptions. Two tools have been developed for use with nurses (26-item cost-benefit tool, 17-item self-confidence tool). Objectives. Firstly, to validate these tools for use with student nurses in the UK. Secondly, to report on the perceived risks and benefits reported by student nurses, and their self-confidence in dealing with this situation. Methods. A sample of 79 student nurses were invited to complete the tools. Item-total correlations and Cronbach’s α were used to determine internal consistency. Factor analysis was computed to assess construct validity. The correlation between the two scales was explored. Results. 69 students completed a questionnaire. Very few had experience of family-witnessed resuscitation. Mean total scores were 3.16 (standard deviation 0.37; range 2.04–4.12) on the risk-benefit scale and 3.14 (standard deviation 0.66; range 1.94–4.82) on the self-confidence scale. Four of the original items were removed from the risk-benefit scale (Cronbach's α 0.86; 95% confidence interval ≥0.82). None were removed from the self-confidence scale (Cronbach's α 0.93; 95% confidence interval ≥0.91). There was a significant correlation between the two scales (r = 0.37, p = 0.002). Conclusions. There is growing evidence that these tools are valid and reliable for measuring student nurses’ perceptions about family-witnessed resuscitation

    Intrapreneurial self-capital training: a case study of an Italian university student

    Get PDF
    This chapter presents a case study which describes the application of the Intrapreneurial Self-Capital Training with a final-year postgraduate female biology student, Erica. The chapter presents an overview of theory that is relevant to the world of work and the conceptual dimensions of intrapreneurial self capital (ISC). Training for ISC aims to assist young people to identify their personal strengths in terms of intrapreneurship and career adaptability. A qualitative instrument, the Life Adaptability Qualitative Assessment (LAQuA) was administered before and after the training to detect meaningful changes in the participant’s narratives about career adaptability and enhanced reflexivity. The LAQuA coding system revealed enhancements to the participant’s awareness about her personal intrapreneurial resources and career adaptability. The relevance of ISC to employability and career services in education contexts is discussed along with recommendations for research into ISC training

    Lettuce (Lactuca sativa) productivity influenced by microbial inocula under nitrogen-limited conditions in aquaponics.

    Get PDF
    The demand for food will outpace productivity of conventional agriculture due to projected growth of the human population, concomitant with shrinkage of arable land, increasing scarcity of freshwater, and a rapidly changing climate. While aquaponics has potential to sustainably supplement food production with minimal environmental impact, there is a need to better characterize the complex interplay between the various components (fish, plant, microbiome) of these systems to optimize scale up and productivity. Here, we investigated how the commonly-implemented practice of continued microbial community transfer from pre-existing systems might promote or impede productivity of aquaponics. Specifically, we monitored plant growth phenotypes, water chemistry, and microbiome composition of rhizospheres, biofilters, and fish feces over 61-days of lettuce (Lactuca sativa var. crispa) growth in nitrogen-limited aquaponic systems inoculated with bacteria that were either commercially sourced or originating from a pre-existing aquaponic system. Lettuce above- and below-ground growth were significantly reduced across replicates treated with a pre-existing aquaponic system inoculum when compared to replicates treated with a commercial inoculum. Reduced productivity was associated with enrichment in specific bacterial genera in plant roots, including Pseudomonas, following inoculum transfer from pre-existing systems. Increased productivity was associated with enrichment of nitrogen-fixing Rahnella in roots of plants treated with the commercial inoculum. Thus, we show that inoculation from a pre-existing system, rather than from a commercial inoculum, is associated with lower yields. Further work will be necessary to test the putative mechanisms involved

    Satellite detection, long-range transport, and air quality impacts of volcanic sulfur dioxide from the 2014–2015 flood lava eruption at Bárðarbunga (Iceland)

    Get PDF
    The 2014–2015 Bárðarbunga-Veiðivötn fissure eruption at Holuhraun produced about 1.5 km3 of lava, making it the largest eruption in Iceland in more than 200 years. Over the course of the eruption, daily volcanic sulfur dioxide (SO2) emissions exceeded daily SO2 emissions from all anthropogenic sources in Europe in 2010 by at least a factor of 3. We present surface air quality observations from across Northern Europe together with satellite remote sensing data and model simulations of volcanic SO2 for September 2014. We show that volcanic SO2 was transported in the lowermost troposphere over long distances and detected by air quality monitoring stations up to 2750 km away from the source. Using retrievals from the Ozone Monitoring Instrument (OMI) and the Infrared Atmospheric Sounding Interferometer (IASI), we calculate an average daily SO2 mass burden of 99 ± 49 kilotons (kt) of SO2 from OMI and 61 ± 18 kt of SO2 from IASI for September 2014. This volcanic burden is at least a factor of 2 greater than the average SO2 mass burden between 2007 and 2009 due to anthropogenic emissions from the whole of Europe. Combining the observational data with model simulations using the United Kingdom Met Office's Numerical Atmospheric-dispersion Modelling Environment model, we are able to constrain SO2 emission rates to up to 120 kilotons per day (kt/d) during early September 2014, followed by a decrease to 20–60 kt/d between 6 and 22 September 2014, followed by a renewed increase to 60–120 kt/d until the end of September 2014. Based on these fluxes, we estimate that the eruption emitted a total of 2.0 ± 0.6 Tg of SO2 during September 2014, in good agreement with ground-based remote sensing and petrological estimates. Although satellite-derived and model-simulated vertical column densities of SO2 agree well, the model simulations are biased low by up to a factor of 8 when compared to surface observations of volcanic SO2 on 6–7 September 2014 in Ireland. These biases are mainly due to relatively small horizontal and vertical positional errors in the simulations of the volcanic plume occurring over transport distances of thousands of kilometers. Although the volcanic air pollution episodes were transient and lava-dominated volcanic eruptions are sporadic events, the observations suggest that (i) during an eruption, volcanic SO2 measurements should be assimilated for near real-time air quality forecasting and (ii) existing air quality monitoring networks should be retained or extended to monitor SO2 and other volcanic pollutants

    A randomized controlled trial to prevent glycemic relapse in longitudinal diabetes care: Study protocol (NCT00362193)

    Get PDF
    BACKGROUND: Diabetes is a common disease with self-management a key aspect of care. Large prospective trials have shown that maintaining glycated hemoglobin less than 7% greatly reduces complications but translating this level of control into everyday clinical practice can be difficult. Intensive improvement programs are successful in attaining control in patients with type 2 diabetes, however, many patients experience glycemic relapse once returned to routine care. This early relapse is, in part, due to decreased adherence in self-management behaviors. OBJECTIVE: This paper describes the design of the Glycemic Relapse Prevention study. The purpose of this study is to determine the optimal frequency of maintenance intervention needed to prevent glycemic relapse. The primary endpoint is glycemic relapse, which is defined as glycated hemoglobin greater than 8% and an increase of 1% from baseline. METHODS: The intervention consists of telephonic contact by a nurse practitioner with a referral to a dietitian if indicated. This intervention was designed to provide early identification of self-care problems, understanding the rationale behind the self-care lapse and problem solve to find a negotiated solution. A total of 164 patients were randomized to routine care (least intensive), routine care with phone contact every three months (moderate intensity) or routine care with phone contact every month (most intensive). CONCLUSION: The baseline patient characteristics are similar across the treatment arms. Intervention fidelity analysis showed excellent reproducibility. This study will provide insight into the important but poorly understood area of glycemic relapse prevention

    Hemocompatibility of Silicon-Based Substrates for Biomedical Implant Applications

    Get PDF
    Silicon membranes with highly uniform nanopore sizes fabricated using microelectromechanical systems (MEMS) technology allow for the development of miniaturized implants such as those needed for renal replacement therapies. However, the blood compatibility of silicon has thus far been an unresolved issue in the use of these substrates in implantable biomedical devices. We report the results of hemocompatibility studies using bare silicon, polysilicon, and modified silicon substrates. The surface modifications tested have been shown to reduce protein and/or platelet adhesion, thus potentially improving biocompatibility of silicon. Hemocompatibility was evaluated under four categories—coagulation (thrombin–antithrombin complex, TAT generation), complement activation (complement protein, C3a production), platelet activation (P-selectin, CD62P expression), and platelet adhesion. Our tests revealed that all silicon substrates display low coagulation and complement activation, comparable to that of Teflon and stainless steel, two materials commonly used in medical implants, and significantly lower than that of diethylaminoethyl (DEAE) cellulose, a polymer used in dialysis membranes. Unmodified silicon and polysilicon showed significant platelet attachment; however, the surface modifications on silicon reduced platelet adhesion and activation to levels comparable to that on Teflon. These results suggest that surface-modified silicon substrates are viable for the development of miniaturized renal replacement systems

    Decreased Autocrine EGFR Signaling in Metastatic Breast Cancer Cells Inhibits Tumor Growth in Bone and Mammary Fat Pad

    Get PDF
    Breast cancer metastasis to bone triggers a vicious cycle of tumor growth linked to osteolysis. Breast cancer cells and osteoblasts express the epidermal growth factor receptor (EGFR) and produce ErbB family ligands, suggesting participation of these growth factors in autocrine and paracrine signaling within the bone microenvironment. EGFR ligand expression was profiled in the bone metastatic MDA-MB-231 cells (MDA-231), and agonist-induced signaling was examined in both breast cancer and osteoblast-like cells. Both paracrine and autocrine EGFR signaling were inhibited with a neutralizing amphiregulin antibody, PAR34, whereas shRNA to the EGFR was used to specifically block autocrine signaling in MDA-231 cells. The impact of these was evaluated with proliferation, migration and gene expression assays. Breast cancer metastasis to bone was modeled in female athymic nude mice with intratibial inoculation of MDA-231 cells, and cancer cell-bone marrow co-cultures. EGFR knockdown, but not PAR34 treatment, decreased osteoclasts formed in vitro (p<0.01), reduced osteolytic lesion tumor volume (p<0.01), increased survivorship in vivo (p<0.001), and resulted in decreased MDA-231 growth in the fat pad (p<0.01). Fat pad shEGFR-MDA-231 tumors produced in nude mice had increased necrotic areas and decreased CD31-positive vasculature. shEGFR-MDA-231 cells also produced decreased levels of the proangiogenic molecules macrophage colony stimulating factor-1 (MCSF-1) and matrix metalloproteinase 9 (MMP9), both of which were decreased by EGFR inhibitors in a panel of EGFR-positive breast cancer cells. Thus, inhibiting autocrine EGFR signaling in breast cancer cells may provide a means for reducing paracrine factor production that facilitates microenvironment support in the bone and mammary gland

    Measurement of the Z/gamma* + b-jet cross section in pp collisions at 7 TeV

    Get PDF
    The production of b jets in association with a Z/gamma* boson is studied using proton-proton collisions delivered by the LHC at a centre-of-mass energy of 7 TeV and recorded by the CMS detector. The inclusive cross section for Z/gamma* + b-jet production is measured in a sample corresponding to an integrated luminosity of 2.2 inverse femtobarns. The Z/gamma* + b-jet cross section with Z/gamma* to ll (where ll = ee or mu mu) for events with the invariant mass 60 < M(ll) < 120 GeV, at least one b jet at the hadron level with pT > 25 GeV and abs(eta) < 2.1, and a separation between the leptons and the jets of Delta R > 0.5 is found to be 5.84 +/- 0.08 (stat.) +/- 0.72 (syst.) +(0.25)/-(0.55) (theory) pb. The kinematic properties of the events are also studied and found to be in agreement with the predictions made by the MadGraph event generator with the parton shower and the hadronisation performed by PYTHIA.Comment: Submitted to the Journal of High Energy Physic
    corecore