401 research outputs found
Challenges of open innovation: the paradox of firm investment in open-source software
Open innovation is a powerful framework encompassing the generation, capture, and employment of intellectual property at the firm level. We identify three fundamental challenges for firms in applying the concept of open innovation: finding creative ways to exploit internal innovation, incorporating external innovation into internal development, and motivating outsiders to supply an ongoing stream of external innovations. This latter challenge involves a paradox, why would firms spend money on R&D efforts if the results of these efforts are available to rival firms? To explore these challenges, we examine the activity of firms in opensource software to support their innovation strategies. Firms involved in open-source software often make investments that will be shared with real and potential rivals. We identify four strategies firms employ – pooled R&D/product development, spinouts, selling complements and attracting donated complements – and discuss how they address the three key challenges of open innovation. We conclude with suggestions for how similar strategies may apply in other industries and offer some possible avenues for future research on open innovation
HCMV pUL135 remodels the actin cytoskeleton to impair immune recognition of infected cells
Immune evasion genes help human cytomegalovirus (HCMV) establish lifelong persistence. Without immune pressure, laboratory-adapted HCMV strains have undergone genetic alterations. Among these, the deletion of the UL/b’ domain is associated with loss of virulence. In a screen of UL/b’, we identified pUL135 as a protein responsible for the characteristic cytopathic effect of clinical HCMV strains that also protected from natural killer (NK) and T cell attack. pUL135 interacted directly with abl interactor 1 (ABI1) and ABI2 to recruit the WAVE2 regulatory complex to the plasma membrane, remodel the actin cytoskeleton and dramatically reduce the efficiency of immune synapse (IS) formation. An intimate association between F-actin filaments in target cells and the IS was dispelled by pUL135 expression. Thus, F-actin in target cells plays a critical role in synaptogenesis, and this can be exploited by pathogens to protect against cytotoxic immune effector cells. An independent interaction between pUL135 and talin disrupted cell contacts with the extracellular matrix
Proton Elastic and Inelastic Scattering at Intermediate Energies from Isotopes of Oxygen and 9-Be as Part of a Unified Study of these Nuclei
This work was supported by the National Science Foundation Grants NSF PHY 78-22774 A03, NSF PHY 81-14339, and by Indiana Universit
Proton Elastic and Inelastic Scattering at Intermediate Energies from Isotopes of Oxygen and 9-Be as Part of a Unified Study of These Nuclei
This work was supported by the National Science Foundation Grant NSF PHY 78-22774 A02 & A03 and by Indiana Universit
Proton Elastic and Inelastic Scattering at Intermediate Energies from Isotopes of Oxygen and 9-Be as Part of a Unified Study of These Nuclei
Supported by the National Science Foundation and Indiana Universit
Relativistic Hydrodynamic Evolutions with Black Hole Excision
We present a numerical code designed to study astrophysical phenomena
involving dynamical spacetimes containing black holes in the presence of
relativistic hydrodynamic matter. We present evolutions of the collapse of a
fluid star from the onset of collapse to the settling of the resulting black
hole to a final stationary state. In order to evolve stably after the black
hole forms, we excise a region inside the hole before a singularity is
encountered. This excision region is introduced after the appearance of an
apparent horizon, but while a significant amount of matter remains outside the
hole. We test our code by evolving accurately a vacuum Schwarzschild black
hole, a relativistic Bondi accretion flow onto a black hole, Oppenheimer-Snyder
dust collapse, and the collapse of nonrotating and rotating stars. These
systems are tracked reliably for hundreds of M following excision, where M is
the mass of the black hole. We perform these tests both in axisymmetry and in
full 3+1 dimensions. We then apply our code to study the effect of the stellar
spin parameter J/M^2 on the final outcome of gravitational collapse of rapidly
rotating n = 1 polytropes. We find that a black hole forms only if J/M^2<1, in
agreement with previous simulations. When J/M^2>1, the collapsing star forms a
torus which fragments into nonaxisymmetric clumps, capable of generating
appreciable ``splash'' gravitational radiation.Comment: 17 pages, 14 figures, submitted to PR
LSST: from Science Drivers to Reference Design and Anticipated Data Products
(Abridged) We describe here the most ambitious survey currently planned in
the optical, the Large Synoptic Survey Telescope (LSST). A vast array of
science will be enabled by a single wide-deep-fast sky survey, and LSST will
have unique survey capability in the faint time domain. The LSST design is
driven by four main science themes: probing dark energy and dark matter, taking
an inventory of the Solar System, exploring the transient optical sky, and
mapping the Milky Way. LSST will be a wide-field ground-based system sited at
Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m
effective) primary mirror, a 9.6 deg field of view, and a 3.2 Gigapixel
camera. The standard observing sequence will consist of pairs of 15-second
exposures in a given field, with two such visits in each pointing in a given
night. With these repeats, the LSST system is capable of imaging about 10,000
square degrees of sky in a single filter in three nights. The typical 5
point-source depth in a single visit in will be (AB). The
project is in the construction phase and will begin regular survey operations
by 2022. The survey area will be contained within 30,000 deg with
, and will be imaged multiple times in six bands, ,
covering the wavelength range 320--1050 nm. About 90\% of the observing time
will be devoted to a deep-wide-fast survey mode which will uniformly observe a
18,000 deg region about 800 times (summed over all six bands) during the
anticipated 10 years of operations, and yield a coadded map to . The
remaining 10\% of the observing time will be allocated to projects such as a
Very Deep and Fast time domain survey. The goal is to make LSST data products,
including a relational database of about 32 trillion observations of 40 billion
objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures
available from https://www.lsst.org/overvie
Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS
The chi_b(nP) quarkonium states are produced in proton-proton collisions at
the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS
detector. Using a data sample corresponding to an integrated luminosity of 4.4
fb^-1, these states are reconstructed through their radiative decays to
Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks
corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new
structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is
also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes.
This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table,
corrected author list, matches final version in Physical Review Letter
Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS
We present the results of a search for new, heavy particles that decay at a
significant distance from their production point into a final state containing
charged hadrons in association with a high-momentum muon. The search is
conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV
and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS
detector operating at the Large Hadron Collider. Production of such particles
is expected in various scenarios of physics beyond the standard model. We
observe no signal and place limits on the production cross-section of
supersymmetric particles in an R-parity-violating scenario as a function of the
neutralino lifetime. Limits are presented for different squark and neutralino
masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final
version to appear in Physics Letters
- …