331 research outputs found
Theoretical models of spin-exchange optical pumping: Revisited and reconciled
Theoretical models for continuous-flow and stopped-flow spin-exchange optical pumping of 129Xe have long predicted much higher 129Xe polarization values than are measured experimentally, leading to a search for additional depolarization mechanisms. In this work, we show that a misapplication of the general theory of spin-exchange optical pumping along with the incorrect use of previously measured spin-exchange constants has been perpetuated in the past 20 years and is the main cause of the long-held discrepancy between theoretical and experimental 129Xe polarization values. Following the standard theory of spin-exchange optical pumping developed almost 40 years ago by Happer et al., we outline the common mistake made in the application of this theory in modern theoretical models and derive a simplified expression of the spin-exchange cross section that can be used to correctly predict 129Xe polarization values under any set of experimental conditions. We show that the complete expression of the spin-exchange cross section derived using the work of Happer et al. predicts spin-exchange rates tenfold higher than those previously assumed in theoretical models of continuous-flow and stopped-flow spin-exchange optical pumping and can fully rectify the long-standing discrepancy between theoretical and experimental polarization values
Resolving the discrepancy between theoretical and experimental polarization of hyperpolarized 129Xe using numerical simulations and in situ optical spectroscopy
For emerging biomedical applications of hyperpolarized xenon, the ability to obtain reliably high nuclear spin polarization levels is paramount. Yet, experimental nuclear spin polarization levels of xenon are highly variable and, more than often than not, well below what theory predicts. Despite rigorous and well-studied theoretical models for hyperpolarization and continuous-flow spin-exchange optical pumping (SEOP), there remains a substantial discrepancy between the theoretical and experimental polarization of 129Xe; inexplicably, seemingly similar experimental parameters can yield very different polarization values. In this paper, the validity of the assumptions typically made about the thermodynamic state of the Rb vapor inside the optical pumping cell and the gas dynamics are investigated through finite element analysis simulations of realistic optical pumping cell models, while in situ optical and nuclear magnetic resonance spectroscopy measurements are used to validate the results of the simulations. Our results show that shorter xenon gas residence times and lower Rb vapor densities than those predicted by empirical saturated vapor pressure curves, along with incorrect SEOP parameters, are the primary cause of the discrepancy between theoretical and experimental polarization values reported in the literature
Magnetic Resonance Detection of Gas Microbubbles via HyperCEST: A Path Toward Dual Modality Contrast Agent
Gas microbubbles are an established clinical ultrasound contrast agent. They could also become a powerful magnetic resonance (MR) intravascular contrast agent, but their low susceptibility-induced contrast requires high circulating concentrations or the addition of exogenous paramagnetic nanoparticles for MR detection. In order to detect clinical in vivo concentrations of raw microbubbles via MR, an alternative detection scheme must be used. HyperCEST is an NMR technique capable of indirectly detecting signals from very dilute molecules (concentrations well below the NMR detection threshold) that exchange hyperpolarized 129Xe. Here, we use quantitative hyperCEST to show that microbubbles are very efficient hyperCEST agents. They can accommodate and saturate millions of 129Xe atoms at a time, allowing for their indirect detection at concentrations as low as 10 femtomolar. The increased MR sensitivity to microbubbles achieved via hyperCEST can bridge the gap for microbubbles to become a dual modality contrast agent
Direct detection of brown adipose tissue thermogenesis in UCP1−/− mice by hyperpolarized 129Xe MR thermometry
Brown adipose tissue (BAT) is a type of fat specialized in non-shivering thermogenesis. While non-shivering thermogenesis is mediated primarily by uncoupling protein 1 (UCP1), the development of the UCP1 knockout mouse has enabled the study of possible UCP1-independent non-shivering thermogenic mechanisms, whose existence has been shown so far only indirectly in white adipose tissue and still continues to be a matter of debate in BAT. In this study, by using magnetic resonance thermometry with hyperpolarized xenon, we produce the first direct evidence of UCP1-independent BAT thermogenesis in knockout mice. We found that, following adrenergic stimulation, the BAT temperature of knockout mice increases more and faster than rectal temperature. While with this study we cannot exclude or separate the physiological effect of norepinephrine on core body temperature, the fast increase of iBAT temperature seems to suggest the existence of a possible UCP1-independent thermogenic mechanism responsible for this temperature increase
A Centre-Stable Manifold for the Focussing Cubic NLS in
Consider the focussing cubic nonlinear Schr\"odinger equation in : It admits special solutions of the form
, where is a Schwartz function and a positive
() solution of The space of
all such solutions, together with those obtained from them by rescaling and
applying phase and Galilean coordinate changes, called standing waves, is the
eight-dimensional manifold that consists of functions of the form . We prove that any solution starting
sufficiently close to a standing wave in the norm and situated on a certain codimension-one local
Lipschitz manifold exists globally in time and converges to a point on the
manifold of standing waves. Furthermore, we show that \mc N is invariant
under the Hamiltonian flow, locally in time, and is a centre-stable manifold in
the sense of Bates, Jones. The proof is based on the modulation method
introduced by Soffer and Weinstein for the -subcritical case and adapted
by Schlag to the -supercritical case. An important part of the proof is
the Keel-Tao endpoint Strichartz estimate in for the nonselfadjoint
Schr\"odinger operator obtained by linearizing around a standing wave solution.Comment: 56 page
Professionalism, Golf Coaching and a Master of Science Degree: A commentary
As a point of reference I congratulate Simon Jenkins on tackling the issue of professionalism in coaching. As he points out coaching is not a profession, but this does not mean that coaching would not benefit from going through a professionalization process. As things stand I find that the stimulus article unpacks some critically important issues of professionalism, broadly within the context of golf coaching. However, I am not sure enough is made of understanding what professional (golf) coaching actually is nor how the development of a professional golf coach can be facilitated by a Master of Science Degree (M.Sc.). I will focus my commentary on these two issues
Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV
Results are presented from a search for a W' boson using a dataset
corresponding to 5.0 inverse femtobarns of integrated luminosity collected
during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV.
The W' boson is modeled as a heavy W boson, but different scenarios for the
couplings to fermions are considered, involving both left-handed and
right-handed chiral projections of the fermions, as well as an arbitrary
mixture of the two. The search is performed in the decay channel W' to t b,
leading to a final state signature with a single lepton (e, mu), missing
transverse energy, and jets, at least one of which is tagged as a b-jet. A W'
boson that couples to fermions with the same coupling constant as the W, but to
the right-handed rather than left-handed chiral projections, is excluded for
masses below 1.85 TeV at the 95% confidence level. For the first time using LHC
data, constraints on the W' gauge coupling for a set of left- and right-handed
coupling combinations have been placed. These results represent a significant
improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV
A search for a Higgs boson decaying into two photons is described. The
analysis is performed using a dataset recorded by the CMS experiment at the LHC
from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an
integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross
section of the standard model Higgs boson decaying to two photons. The expected
exclusion limit at 95% confidence level is between 1.4 and 2.4 times the
standard model cross section in the mass range between 110 and 150 GeV. The
analysis of the data excludes, at 95% confidence level, the standard model
Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The
largest excess of events above the expected standard model background is
observed for a Higgs boson mass hypothesis of 124 GeV with a local significance
of 3.1 sigma. The global significance of observing an excess with a local
significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is
estimated to be 1.8 sigma. More data are required to ascertain the origin of
this excess.Comment: Submitted to Physics Letters
Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV
The Lambda(b) differential production cross section and the cross section
ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum
pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7
TeV using data collected by the CMS experiment at the LHC. The measurements are
based on Lambda(b) decays reconstructed in the exclusive final state J/Psi
Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and
Lambda to proton pion, using a data sample corresponding to an integrated
luminosity of 1.9 inverse femtobarns. The product of the cross section times
the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls
faster than that of b mesons. The measured value of the cross section times the
branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06
+/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for
anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are
statistical and systematic, respectively.Comment: Submitted to Physics Letters
Measurement of isolated photon production in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV
Isolated photon production is measured in proton-proton and lead-lead
collisions at nucleon-nucleon centre-of-mass energies of 2.76 TeV in the
pseudorapidity range |eta|<1.44 and transverse energies ET between 20 and 80
GeV with the CMS detector at the LHC. The measured ET spectra are found to be
in good agreement with next-to-leading-order perturbative QCD predictions. The
ratio of PbPb to pp isolated photon ET-differential yields, scaled by the
number of incoherent nucleon-nucleon collisions, is consistent with unity for
all PbPb reaction centralities.Comment: Submitted to Physics Letters
- …