245 research outputs found
Role of arginase in killing of schistosomula of schistosoma mansoni
Nonspecific resistance to the multicellular organism Schistosoma mansoni can be induced in mice by several infectious agents. We utilized the observed genetic restriction of such acquired resistance to study the mediators of killing of the larval stage of S. mansoni in vitro. Adherent peritoneal cell monolayers from Corynebacterium parvum-treated C57BL/6J but not from C. parvum-treated BALB/cJ mice killed an increased proportion of schistosomula in 24 h. Activated macrophages (Mφ) from both strains exhibited enhanced H(2)0(2) production after incubation with the parasites or phorbol myristate acetate. Thus H(2)0(2) production was not associated with schistosomula killing. Moreover, schistosomula killing was unaffected by catalase or superoxide dismutase. In contrast, activated C57BL/6J (but not BALB/cJ) Mφ released fourfold more arginase into supernates than control Mφ. Schistosomula killing by these Mφ correlated with arginase content of the supernates, was exaggerated in arginine-poor medium, and could be blocked by the addition of arginine. Exogenous bovine arginase added to Fischer's medium without macrophages produced comparable parasite mortality. Our data suggest that arginase is a critical mediator of in vitro killing of this multicellular organism by activated macrophages
Protocol for the "Michigan Awareness Control Study": A prospective, randomized, controlled trial comparing electronic alerts based on bispectral index monitoring or minimum alveolar concentration for the prevention of intraoperative awareness
<p>Abstract</p> <p>Background</p> <p>The incidence of intraoperative awareness with explicit recall is 1-2/1000 cases in the United States. The Bispectral Index monitor is an electroencephalographic method of assessing anesthetic depth that has been shown in one prospective study to reduce the incidence of awareness in the high-risk population. In the B-Aware trial, the number needed to treat in order to prevent one case of awareness in the high-risk population was 138. Since the number needed to treat and the associated cost of treatment would be much higher in the general population, the efficacy of the Bispectral Index monitor in preventing awareness in all anesthetized patients needs to be clearly established. This is especially true given the findings of the B-Unaware trial, which demonstrated no significant difference between protocols based on the Bispectral Index monitor or minimum alveolar concentration for the reduction of awareness in high risk patients.</p> <p>Methods/Design</p> <p>To evaluate efficacy in the general population, we are conducting a prospective, randomized, controlled trial comparing the Bispectral Index monitor to a non-electroencephalographic gauge of anesthetic depth. The total recruitment for the study is targeted for 30,000 patients at both low and high risk for awareness. We have developed a novel algorithm that is capable of real-time analysis of our electronic perioperative information system. In one arm of the study, anesthesia providers will receive an electronic page if the Bispectral Index value is >60. In the other arm of the study, anesthesia providers will receive a page if the age-adjusted minimum alveolar concentration is <0.5. Our minimum alveolar concentration algorithm is sensitive to both inhalational anesthetics and intravenous sedative-hypnotic agents.</p> <p>Discussion</p> <p>Awareness during general anesthesia is a persistent problem and the role of the Bispectral Index monitor in its prevention is still unclear. The Michigan Awareness Control Study is the largest prospective trial of awareness prevention ever conducted.</p> <p>Trial Registration</p> <p>Clinical Trial NCT00689091</p
Carriage of Extended-Spectrum Beta-Lactamase-Plasmids Does Not Reduce Fitness but Enhances Virulence in Some Strains of Pandemic E. coli Lineages
Pathogenic ESBL-producing E. coli lineages occur frequently worldwide, not only in a human health context but in animals and the environment, also in settings with low antimicrobial pressures. This study investigated the fitness costs of ESBL-plasmids and their influence on chromosomally encoded features associated with virulence, such as those involved in the planktonic and sessile behaviors of ST131 and ST648 E. coli. ESBL-plasmid-carrying wild-type E. coli strains, their corresponding ESBL-plasmid-"cured" variants (PCV), and complementary ESBL-carrying transformants were comparatively analyzed using growth curves, Omnilog® phenotype microarray (PM) assays, macrocolony and biofilm formation, swimming motility, and RNA sequence analysis. Growth curves and PM results pointed toward similar growth and metabolic behaviors among the strains. Phenotypic differences in some strains were detected, including enhanced curli fimbriae and/or cellulose production as well as a reduced swimming capacity of some ESBL-carrying strains, as compared to their respective PCVs. RNA sequencing mostly confirmed the phenotypic results, suggesting that the chromosomally encoded csgD pathway is a key factor involved. These results contradict the hypothesis that ESBL-plasmid-carriage leads to a fitness loss in ESBL-carrying strains. Instead, the results indicate an influence of some ESBL-plasmids on chromosomally encoded features associated with virulence in some E. coli strains. In conclusion, apart from antibiotic resistance selective advantages, ESBL-plasmid-carriage may also lead to enhanced virulence or adaption to specific habitats in some strains of pandemic ESBL-producing E. coli lineages
The Colletotrichum acutatum species complex as a model system to study evolution and host specialization in plant pathogens
PerspectiveColletotrichum spp. infect a wide diversity of hosts, causing plant diseases on many
economically important crops worldwide. The genus contains approximately 189
species organized into at least 11 major phylogenetic lineages, also known as species
complexes. The Colletotrichum acutatum species complex is a diverse yet relatively
closely related group of plant pathogenic fungi within this genus. Within the species
complex we find a wide diversity of important traits such as host range and host
preference, mode of reproduction and differences in the strategy used to infect their
hosts. Research on fungal comparative genomics have attempted to find correlations
in these traits and patterns of gene family evolution but such studies typically compare
fungi from different genera or even different fungal Orders. The C. acutatum species
complex contains most of this diversity within a group of relatively closely related
species. This Perspective article presents a review of the current knowledge on
C. acutatum phylogeny, biology, and pathology. It also demonstrates the suitability of
C. acutatum for the study of gene family evolution on a fine scale to uncover evolutionary
events in the genome that are associated with the evolution of phenotypic characters
important for host interactions.info:eu-repo/semantics/publishedVersio
A microsporidian impairs Plasmodium falciparum transmission in Anopheles arabiensis mosquitoes
A possible malaria control approach involves the dissemination in mosquitoes of inherited symbiotic microbes to block Plasmodium transmission. However, in the Anopheles gambiae complex, the primary African vectors of malaria, there are limited reports of inherited symbionts that impair transmission. We show that a vertically transmitted microsporidian symbiont (Microsporidia MB) in the An. gambiae complex can impair Plasmodium transmission. Microsporidia MB is present at moderate prevalence in geographically dispersed populations of An. arabiensis in Kenya, localized to the mosquito midgut and ovaries, and is not associated with significant reductions in adult host fecundity or survival. Field-collected Microsporidia MB infected An. arabiensis tested negative for P. falciparum gametocytes and, on experimental infection with P. falciparum, sporozoites aren’t detected in Microsporidia MB infected mosquitoes. As a microbe that impairs Plasmodium transmission that is non-virulent and vertically transmitted, Microsporidia MB could be investigated as a strategy to limit malaria transmission
Molecular detection of tick-borne pathogen diversities in ticks from livestock and reptiles along the shores and adjacent islands of lake Victoria and lake Baringo, Kenya
Tick-borne pathogens (TBPs) are responsible for some of the
most serious emerging infectious diseases facing sub-Saharan
Africa (SSA) and the rest of the world today (1, 2). In Kenya,
TBPs (including viral diseases—arboviruses) like Crimean
Congo hemorrhagic fever (CCHF), Dugbe, Kupe, and Hazara,
as well as hemoparasites that cause babesiosis, theileriosis, and
rickettsiosis, are major impediments to livestock productivity and
public health
Molecular Longitudinal Tracking of Mycobacterium abscessus spp. during Chronic Infection of the Human Lung
<div><p>The <i>Mycobacterium abscessus</i> complex is an emerging cause of chronic pulmonary infection in patients with underlying lung disease. The <i>M. abscessus</i> complex is regarded as an environmental pathogen but its molecular adaptation to the human lung during long-term infection is poorly understood. Here we carried out a longitudinal molecular epidemiological analysis of 178 <i>M. abscessus</i> spp. isolates obtained from 10 cystic fibrosis (CF) and 2 non CF patients over a 13 year period. Multi-locus sequence and molecular typing analysis revealed that 11 of 12 patients were persistently colonized with the same genotype during the course of the infection while replacement of a <i>M. abscessus sensu stricto</i> strain with a <i>Mycobacterium massiliense</i> strain was observed for a single patient. Of note, several patients including a pair of siblings were colonized with closely-related strains consistent with intra-familial transmission or a common infection reservoir. In general, a switch from smooth to rough colony morphology was observed during the course of long-term infection, which in some cases correlated with an increasing severity of clinical symptoms. To examine evolution during long-term infection of the CF lung we compared the genome sequences of 6 sequential isolates of <i>Mycobacterium bolletii</i> obtained from a single patient over an 11 year period, revealing a heterogeneous clonal infecting population with mutations in regulators controlling the expression of virulence factors and complex lipids. Taken together, these data provide new insights into the epidemiology of <i>M. abscessus</i> spp. during long-term infection of the CF lung, and the molecular transition from saprophytic organism to human pathogen.</p></div
Species and abundance of ectoparasitic flies (Diptera) in pied flycatcher nests in Fennoscandia
Peer reviewe
Balanced gene losses, duplications and intensive rearrangements led to an unusual regularly sized genome in Arbutus unedo chloroplasts
Completely sequenced plastomes provide a valuable source of information about the duplication, loss, and transfer events of chloroplast genes and phylogenetic data for resolving relationships among major groups of plants. Moreover, they can also be useful for exploiting chloroplast genetic engineering technology. Ericales account for approximately six per cent of eudicot diversity with 11,545 species from which only three complete plastome sequences are currently available. With the aim of increasing the number of ericalean complete plastome sequences, and to open new perspectives in understanding Mediterranean plant adaptations, a genomic study on the basis of the complete chloroplast genome sequencing of Arbutus unedo and an updated phylogenomic analysis of Asteridae was implemented. The chloroplast genome of A. unedo shows extensive rearrangements but a medium size (150,897 nt) in comparison to most of angiosperms. A number of remarkable distinct features characterize the plastome of A. unedo: five-fold dismissing of the SSC region in relation to most angiosperms; complete loss or pseudogenization of a number of essential genes; duplication of the ndhH-D operon and its location within the two IRs; presence of large tandem repeats located near highly re-arranged regions and pseudogenes. All these features outline the primary evolutionary split between Ericaceae and other ericalean families. The newly sequenced plastome of A. unedo with the available asterid sequences allowed the resolution of some uncertainties in previous phylogenies of Asteridae
- …