601 research outputs found

    Sealing, healing and fluid flow in clay rocks : Insights on episodic flow events in fault zones

    Get PDF
    The porosity distribution and mineralogical changes in a clay-rich fault core from the Tournemire underground research laboratory are analyzed to determine the mechano-chemical processes in a small-scale vertical strike-slip fault. The results display significant spatial variations in porosity and mineralogy along different gouge zones due to a polyphased tectonic history combined with complex paleo-fluid migrations. Porosity values increase from the center of the gouges to their borders indicating diffusive sealing/healing effects and past hydrothermal activities. The healing and thus the strengthening of the fault is marked by an increase of calcium content, which is concurrent with lower porosities around the gouge zone. Chemical mapping in the gouges reveal clay alteration, iron zonality and the presence of zinc sulphide as well as barium sulphate inside the gouge, further suggesting past hydrothermal activity. Finally, even though the observed porosity variations only occur in subcentimeter-thick gouge bands, the higher porosity sections are pathways for fluid flow during fault activity. © 5th International Conference on Fault and Top Seals 2019. All Rights Reserved.Peer reviewe

    Sports operations management: examining the relationship between environmental uncertainty and quality management orientation

    Get PDF
    Research question: The outcome of a sporting competition is uncertain and one of the key reasons for the sustained popularity of spectator sport. Whilst unique and exciting, this context poses challenges for the management of the sporting experience as there is no control over the outcome of the competition; a disappointing result on-field may translate to a disappointing overall experience for the spectators. We wish to understand if and how quality management practices can be used in off-field operations to mitigate on-field uncertainty, and thus have greater control over spectator perception of the sporting experience. Research methods: A multi-country survey of operations managers of sporting stadia in the United Kingdom, United States, Canada, Australia and New Zealand was conducted. We operationalize environmental uncertainty as spectator co-creation and enforced collaboration, and assess quality management orientation from both a customer and process perspective. Linear regression is used for data analysis. Results and Findings: Surprisingly, we find that environmental uncertainty does not encourage the orientation of quality management practices towards the customer. Instead, we find a greater application of process focus. In considering sporting fans as passive customers rather than active co-creators of value, quality management practices seem to have skewed towards process rather than person. Implications: Customer satisfaction appears as secondary to process performance in the sample of stadia examined. This is in contrast to studies that have encouraged a focus on the customer in contexts of environmental uncertainty. We suggest a renewed focus on the customer for the longevity of sporting stadia

    Identification of type III secretion inhibitors for plant disease management

    Get PDF
    Bacterial plant pathogens are among the most devastating threats to agriculture. To date, there are no effective means to control bacterial plant diseases due to the restrictions in the use of antibiotics in agriculture. A novel strategy under study is the use of chemical compounds that inhibit the expression of key bacterial virulence determinants. The type III secretion system is essential for virulence of many Gram-negative bacteria because it injects into the plant host cells bacterial proteins that interfere with their immune system. Here, we describe the methodology to identify bacterial type III secretion inhibitors, including a series of protocols that combine in planta and in vitro experiments. We use Ralstonia solanacearum as a model because of the number of genetic tools available in this organism and because it causes bacterial wilt, one of the most threatening plant diseases worldwide. The procedures presented can be used to evaluate the effect of different chemical compounds on bacterial growth and virulence

    The effects of CO2, climate and land-use on terrestrial carbon balance, 1920-1992: An analysis with four process-based ecosystem models

    Get PDF
    The concurrent effects of increasing atmospheric CO2 concentration, climate variability, and cropland establishment and abandonment on terrestrial carbon storage between 1920 and 1992 were assessed using a standard simulation protocol with four process-based terrestrial biosphere models. Over the long-term(1920–1992), the simulations yielded a time history of terrestrial uptake that is consistent (within the uncertainty) with a long-term analysis based on ice core and atmospheric CO2 data. Up to 1958, three of four analyses indicated a net release of carbon from terrestrial ecosystems to the atmosphere caused by cropland establishment. After 1958, all analyses indicate a net uptake of carbon by terrestrial ecosystems, primarily because of the physiological effects of rapidly rising atmospheric CO2. During the 1980s the simulations indicate that terrestrial ecosystems stored between 0.3 and 1.5 Pg C yr−1, which is within the uncertainty of analysis based on CO2 and O2 budgets. Three of the four models indicated (in accordance with O2 evidence) that the tropics were approximately neutral while a net sink existed in ecosystems north of the tropics. Although all of the models agree that the long-term effect of climate on carbon storage has been small relative to the effects of increasing atmospheric CO2 and land use, the models disagree as to whether climate variability and change in the twentieth century has promoted carbon storage or release. Simulated interannual variability from 1958 generally reproduced the El Niño/Southern Oscillation (ENSO)-scale variability in the atmospheric CO2 increase, but there were substantial differences in the magnitude of interannual variability simulated by the models. The analysis of the ability of the models to simulate the changing amplitude of the seasonal cycle of atmospheric CO2 suggested that the observed trend may be a consequence of CO2 effects, climate variability, land use changes, or a combination of these effects. The next steps for improving the process-based simulation of historical terrestrial carbon include (1) the transfer of insight gained from stand-level process studies to improve the sensitivity of simulated carbon storage responses to changes in CO2 and climate, (2) improvements in the data sets used to drive the models so that they incorporate the timing, extent, and types of major disturbances, (3) the enhancement of the models so that they consider major crop types and management schemes, (4) development of data sets that identify the spatial extent of major crop types and management schemes through time, and (5) the consideration of the effects of anthropogenic nitrogen deposition. The evaluation of the performance of the models in the context of a more complete consideration of the factors influencing historical terrestrial carbon dynamics is important for reducing uncertainties in representing the role of terrestrial ecosystems in future projections of the Earth system

    Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders

    Get PDF
    Personality is influenced by genetic and environmental factors1 and associated with mental health. However, the underlying genetic determinants are largely unknown. We identified six genetic loci, including five novel loci2,3, significantly associated with personality traits in a meta-analysis of genome-wide association studies (N = 123,132–260,861). Of these genomewide significant loci, extraversion was associated with variants in WSCD2 and near PCDH15, and neuroticism with variants on chromosome 8p23.1 and in L3MBTL2. We performed a principal component analysis to extract major dimensions underlying genetic variations among five personality traits and six psychiatric disorders (N = 5,422–18,759). The first genetic dimension separated personality traits and psychiatric disorders, except that neuroticism and openness to experience were clustered with the disorders. High genetic correlations were found between extraversion and attention-deficit– hyperactivity disorder (ADHD) and between openness and schizophrenia and bipolar disorder. The second genetic dimension was closely aligned with extraversion–introversion and grouped neuroticism with internalizing psychopathology (e.g., depression or anxiety)

    Ensuring meiotic DNA break formation in the mouse pseudoautosomal region

    Get PDF
    In mice, the pseudoautosomal region of the sex chromosomes undergoes a dynamic structural rearrangement to promote a high rate of DNA double-strand breaks and to ensure X-Y recombination. Sex chromosomes in males of most eutherian mammals share only a small homologous segment, the pseudoautosomal region (PAR), in which the formation of double-strand breaks (DSBs), pairing and crossing over must occur for correct meiotic segregation(1,2). How cells ensure that recombination occurs in the PAR is unknown. Here we present a dynamic ultrastructure of the PAR and identify controlling cis- and trans-acting factors that make the PAR the hottest segment for DSB formation in the male mouse genome. Before break formation, multiple DSB-promoting factors hyperaccumulate in the PAR, its chromosome axes elongate and the sister chromatids separate. These processes are linked to heterochromatic mo-2 minisatellite arrays, and require MEI4 and ANKRD31 proteins but not the axis components REC8 or HORMAD1. We propose that the repetitive DNA sequence of the PAR confers unique chromatin and higher-order structures that are crucial for recombination. Chromosome synapsis triggers collapse of the elongated PAR structure and, notably, oocytes can be reprogrammed to exhibit spermatocyte-like levels of DSBs in the PAR simply by delaying or preventing synapsis. Thus, the sexually dimorphic behaviour of the PAR is in part a result of kinetic differences between the sexes in a race between the maturation of the PAR structure, formation of DSBs and completion of pairing and synapsis. Our findings establish a mechanistic paradigm for the recombination of sex chromosomes during meiosis.Peer reviewe

    A large carbon sink in the woody biomass of Northern forests

    Get PDF
    The terrestrial carbon sink, as of yet unidentified, represents 15–30% of annual global emissions of carbon from fossil fuels and industrial activities. Some of the missing carbon is sequestered in vegetation biomass and, under the Kyoto Protocol of the United Nations Framework Convention on Climate Change, industrialized nations can use certain forest biomass sinks to meet their greenhouse gas emissions reduction commitments. Therefore, we analyzed 19 years of data from remote-sensing spacecraft and forest inventories to identify the size and location of such sinks. The results, which cover the years 1981–1999, reveal a picture of biomass carbon gains in Eurasian boreal and North American temperate forests and losses in some Canadian boreal forests. For the 1.42 billion hectares of Northern forests, roughly above the 30th parallel, we estimate the biomass sink to be 0.68 ± 0.34 billion tons carbon per year, of which nearly 70% is in Eurasia, in proportion to its forest area and in disproportion to its biomass carbon pool. The relatively high spatial resolution of these estimates permits direct validation with ground data and contributes to a monitoring program of forest biomass sinks under the Kyoto protocol

    Considerations on biologicals for patients with allergic disease in times of the COVID-19 pandemic: An EAACI statement

    Get PDF
    The outbreak of the SARS-CoV-2-induced coronavirus disease 2019 (COVID-19) pandemic re-shaped doctor-patient interaction and challenged capacities of healthcare systems. It created many issues around the optimal and safest way to treat complex patients with severe allergic disease. A significant number of the patients are on treatment with biologicals, and clinicians face the challenge to provide optimal care during the pandemic. Uncertainty of the potential risks for these patients is related to the fact that the exact sequence of immunological events during SARS-CoV-2 is not known. Severe COVID-19 patients may experience a “cytokine storm” and associated organ damage characterized by an exaggerated release of pro-inflammatory type 1 and type 3 cytokines. These inflammatory responses are potentially counteracted by anti-inflammatory cytokines and type 2 responses. This expert-based EAACI statement aims to provide guidance on the application of biologicals targeting type 2 inflammation in patients with allergic disease. Currently, there is very little evidence for an enhanced risk of patients with allergic diseases to develop severe COVID-19. Studies focusing on severe allergic phenotypes are lacking. At present, noninfected patients on biologicals for the treatment of asthma, atopic dermatitis, chronic rhinosinusitis with nasal polyps, or chronic spontaneous urticaria should continue their biologicals targeting type 2 inflammation via self-application. In case of an active SARS-CoV-2 infection, biological treatment needs to be stopped until clinical recovery and SARS-CoV-2 negativity is established and treatment with biologicals should be re-initiated. Maintenance of add-on therapy and a constant assessment of disease control, apart from acute management, are demanded

    Managing Climate Risk

    Get PDF
    Stabilization of atmospheric greenhouse gas (GHG) concentrations at a safe level is a paradigm that the scientific and policy communities have widely adopted for addressing the problem of climate change. However, aiming to stabilize concentrations at a single target level might not be a robust strategy, given that the environment is extremely uncertain. The static stabilization paradigm is based primarily on two assumptions: (i), that a safe level of GHG concentrations exists and can be sustained, and (ii) that such a level can be determined ex ante. The United Nations Framework Convention on Climate Change (UNFCCC) calls for stabilization of GHGs at a safe level, and it also prescribes precautionary measures to anticipate, prevent, or minimize the causes of climate change and mitigate their adverse effects...
    • 

    corecore