3 research outputs found

    Reactivity of tri(2-furyl)phosphine (Pfu\u3csub\u3e3\u3c/sub\u3e) with [Mn\u3csub\u3e2\u3c/sub\u3e(CO)\u3csub\u3e10–\u3cem\u3en\u3c/em\u3e\u3c/sub\u3e(NCMe)\u3csub\u3e\u3cem\u3en\u3c/em\u3e\u3c/sub\u3e] (\u3cem\u3en\u3c/em\u3e = 0–2): X-ray Structure of \u3cem\u3emer\u3c/em\u3e-[Mn(CO)\u3csub\u3e3\u3c/sub\u3e(η\u3csup\u3e1\u3c/sup\u3e-C\u3csub\u3e4\u3c/sub\u3eH\u3csub\u3e3\u3c/sub\u3eO)(Pfu\u3csub\u3e3\u3c/sub\u3e)\u3csub\u3e2\u3c/sub\u3e]

    Get PDF
    In the search for new examples of systems that self-assemble into cyclic metal–organic architectures, the six isomers of X,Y′-bis(di(1H-pyrazolyl)methane)-1,1′-biphenyl, LXY, and their silver(I) trifluoromethanesulfonate complexes were prepared. Five of the six silver complexes gave crystals suitable for single crystal X-ray diffraction, with only the microcrystalline derivative of 2,3′-bis(di(1H-pyrazolyl)methane)-1,1′-biphenyl, L23, proving to be unsuitable for this analysis. Of the structurally characterized silver(I) complexes, that with L22 showed an unusual trans-spanning chelating coordination mode to silver. At the same time the ligand was also bound to a second silver center giving rise to a cyclic supramolecular isomer with a 22-membered metallacycle. The complex of L34 also gave a cyclic dication but with a remarkable 28-membered metallacycle ring. The remaining three derivatives were polymeric. The results of this study underscore that a 120° angle between dipyrazolylmethyl moieties across aromatic spacers will give rise to a cyclic dication but this is not an exclusive requirement for the formation of cyclic architectures. Also, the supramolecular structures of complexes are assembled via a variety of noncovalent interactions involving the di(pyrazolyl)methyl cation most notably by weak hydrogen bonding interactions involving the methine hydrogen and an oxygen atom of the triflate anion

    Ring formation by 5-endo-dig Cyclization

    No full text
    corecore