20 research outputs found

    Evaluation of non-invasive continuous physiological monitoring devices for neonates in Nairobi, Kenya: a research protocol

    Get PDF
    Introduction: Continuous physiological monitoring devices are often not available for monitoring high-risk neonates in low-resource settings. Easy-to-use, non-invasive, multiparameter, continuous physiological monitoring devices could be instrumental in providing appropriate care and improving outcomes for high-risk neonates in these low-resource settings. Methods and analysis: The purpose of this prospective, observational, facility-based evaluation is to provide evidence to establish whether two existing non-invasive, multiparameter, continuous physiological monitoring devices developed by device developers, EarlySense and Sibel, can accurately and reliably measure vital signs in neonates (when compared with verified reference devices). We will also assess the feasibility, usability and acceptability of these devices for use in neonates in low-resource settings in Africa. Up to 500 neonates are enrolled in two phases: (1) a verification and accuracy evaluation phase at Aga Khan University—Nairobi and (2) a clinical feasibility evaluation phase at Pumwani Maternity Hospital in Nairobi, Kenya. Both quantitative and qualitative data are collected and analysed. Agreement between the investigational and reference devices is determined using a priori-defined accuracy thresholds. Ethics and dissemination: This trial was approved by the Aga Khan University Nairobi Research Ethics Committee and the Western Institutional Review Board. We plan to disseminate research results in peer-reviewed journals and international conferences

    Evaluation of a contactless neonatal physiological monitor in Nairobi, Kenya

    Get PDF
    Background: Globally, 2.5 million neonates died in 2018, accounting for 46% of under-5 deaths. Multiparameter continuous physiological monitoring (MCPM) of neonates allows for early detection and treatment of life-threatening health problems. However, neonatal monitoring technology is largely unavailable in low-resource settings. Methods: In four evaluation rounds, we prospectively compared the accuracy of the EarlySense under-mattress device to the Masimo Rad-97 pulse CO-oximeter with capnography reference device for heart rate (HR) and respiratory rate (RR) measurements in neonates in Kenya. EarlySense algorithm optimisations were made between evaluation rounds. In each evaluation round, we compared 200 randomly selected epochs of data using Bland-Altman plots and generated Clarke error grids with zones of 20% to aid in clinical interpretation. Results: Between 9 July 2019 and 8 January 2020, we collected 280 hours of MCPM data from 76 enrolled neonates. At the final evaluation round, the EarlySense MCPM device demonstrated a bias of -0.8 beats/minute for HR and 1.6 breaths/minute for RR, and normalised spread between the 95% upper and lower limits of agreement of 6.2% for HR and 27.3% for RR. Agreement between the two MCPM devices met the a priori-defined threshold of 30%. The Clarke error grids showed that all observations for HR and 197/200 for RR were within a 20% difference. Conclusion: Our research indicates that there is acceptable agreement between the EarlySense and Masimo MCPM devices in the context of large within-subject variability; however, further studies establishing cost-effectiveness and clinical effectiveness are needed before large-scale implementation of the EarlySense MCPM device in neonates

    Correlation Differences in Heartbeat Fluctuations During Rest and Exercise

    Full text link
    We study the heartbeat activity of healthy individuals at rest and during exercise. We focus on correlation properties of the intervals formed by successive peaks in the pulse wave and find significant scaling differences between rest and exercise. For exercise the interval series is anticorrelated at short time scales and correlated at intermediate time scales, while for rest we observe the opposite crossover pattern -- from strong correlations in the short-time regime to weaker correlations at larger scales. We suggest a physiologically motivated stochastic scenario to explain the scaling differences between rest and exercise and the observed crossover patterns.Comment: 4 pages, 4 figure

    Large-scale analysis of association between LRP5 and LRP6 variants and osteoporosis

    Get PDF
    CONTEXT: Mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) gene cause rare syndromes characterized by altered bone mineral density (BMD). More common LRP5 variants may affect osteoporosis risk in the general population.OBJECTIVE: To generate large-scale evidence on whether 2 common variants of LRP5 (Val667Met, Ala1330Val) and 1 variant of LRP6 (Ile1062Val) are associated with BMD and fracture risk.DESIGN AND SETTING: Prospective, multicenter, collaborative study of individual-level data on 37,534 individuals from 18 participating teams in Europe and North America. Data were collected between September 2004 and January 2007; analysis of the collected data was performed between February and May 2007. Bone mineral density was assessed by dual-energy x-ray absorptiometry. Fractures were identified via questionnaire, medical records, or radiographic documentation; incident fracture data were available for some cohorts, ascertained via routine surveillance methods, including radiographic examination for vertebral fractures.MAIN OUTCOME MEASURES: Bone mineral density of the lumbar spine and femoral neck; prevalence of all fractures and vertebral fractures.RESULTS: The Met667 allele of LRP5 was associated with reduced lumbar spine BMD (n = 25,052 [number of participants with available data]; 20-mg/cm2 lower BMD per Met667 allele copy; P = 3.3 x 10(-8)), as was the Val1330 allele (n = 24,812; 14-mg/cm2 lower BMD per Val1330 copy; P = 2.6 x 10(-9)). Similar effects were observed for femoral neck BMD, with a decrease of 11 mg/cm2 (P = 3.8 x 10(-5)) and 8 mg/cm2 (P = 5.0 x 10(-6)) for the Met667 and Val1330 alleles, respectively (n = 25 193). Findings were consistent across studies for both LRP5 alleles. Both alleles were associated with vertebral fractures (odds ratio [OR], 1.26; 95% confidence interval [CI], 1.08-1.47 for Met667 [2001 fractures among 20 488 individuals] and OR, 1.12; 95% CI, 1.01-1.24 for Val1330 [1988 fractures among 20,096 individuals]). Risk of all fractures was also increased with Met667 (OR, 1.14; 95% CI, 1.05-1.24 per allele [7876 fractures among 31,435 individuals)]) and Val1330 (OR, 1.06; 95% CI, 1.01-1.12 per allele [7802 fractures among 31 199 individuals]). Effects were similar when adjustments were made for age, weight, height, menopausal status, and use of hormone therapy. Fracture risks were partly attenuated by adjustment for BMD. Haplotype analysis indicated that Met667 and Val1330 variants both independently affected BMD. The LRP6 Ile1062Val polymorphism was not associated with any osteoporosis phenotype. All aforementioned associations except that between Val1330 and all fractures and vertebral fractures remained significant after multiple-comparison adjustments.CONCLUSIONS: Common LRP5 variants are consistently associated with BMD and fracture risk across different white populations. The magnitude of the effect is modest. LRP5 may be the first gene to reach a genome-wide significance level (a conservative level of significance [herein, unadjusted P < 10(-7)] that accounts for the many possible comparisons in the human genome) for a phenotype related to osteoporosis

    Genetic determinants of heel bone properties: genome-wide association meta-analysis and replication in the GEFOS/GENOMOS consortium

    Get PDF
    Quantitative ultrasound of the heel captures heel bone properties that independently predict fracture risk and, with bone mineral density (BMD) assessed by X-ray (DXA), may be convenient alternatives for evaluating osteoporosis and fracture risk. We performed a meta-analysis of genome-wide association (GWA) studies to assess the genetic determinants of heel broadband ultrasound attenuation (BUA; n = 14 260), velocity of sound (VOS; n = 15 514) and BMD (n = 4566) in 13 discovery cohorts. Independent replication involved seven cohorts with GWA data (in silico n = 11 452) and new genotyping in 15 cohorts (de novo n = 24 902). In combined random effects, meta-analysis of the discovery and replication cohorts, nine single nucleotide polymorphisms (SNPs) had genome-wide significant (P < 5 × 10(-8)) associations with heel bone properties. Alongside SNPs within or near previously identified osteoporosis susceptibility genes including ESR1 (6q25.1: rs4869739, rs3020331, rs2982552), SPTBN1 (2p16.2: rs11898505), RSPO3 (6q22.33: rs7741021), WNT16 (7q31.31: rs2908007), DKK1 (10q21.1: rs7902708) and GPATCH1 (19q13.11: rs10416265), we identified a new locus on chromosome 11q14.2 (rs597319 close to TMEM135, a gene recently linked to osteoblastogenesis and longevity) significantly associated with both BUA and VOS (P < 8.23 × 10(-14)). In meta-analyses involving 25 cohorts with up to 14 985 fracture cases, six of 10 SNPs associated with heel bone properties at P < 5 × 10(-6) also had the expected direction of association with any fracture (P < 0.05), including three SNPs with P < 0.005: 6q22.33 (rs7741021), 7q31.31 (rs2908007) and 10q21.1 (rs7902708). In conclusion, this GWA study reveals the effect of several genes common to central DXA-derived BMD and heel ultrasound/DXA measures and points to a new genetic locus with potential implications for better understanding of osteoporosis pathophysiology

    Genetic Sharing with Cardiovascular Disease Risk Factors and Diabetes Reveals Novel Bone Mineral Density Loci.

    Get PDF
    Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    tone in streptozotocin-induced diabetic rats Scaling vs. nonscaling methods of assessing autonomic

    No full text
    intact animal to the cellular, subcellular, and molecular levels. It is published 12 times a year (monthly) by the American lymphatics, including experimental and theoretical studies of cardiovascular function at all levels of organization ranging from the publishes original investigations on the physiology of the heart, blood vessels, and AJP -Heart and Circulatory Physiolog
    corecore