74 research outputs found

    The Physics of the B Factories

    Get PDF
    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C

    Observation of Two New Excited Ξb0 States Decaying to Λb0 K-π+

    Get PDF
    Two narrow resonant states are observed in the Λb0K-π+ mass spectrum using a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the LHCb experiment and corresponding to an integrated luminosity of 6 fb-1. The minimal quark content of the Λb0K-π+ system indicates that these are excited Ξb0 baryons. The masses of the Ξb(6327)0 and Ξb(6333)0 states are m[Ξb(6327)0]=6327.28-0.21+0.23±0.12±0.24 and m[Ξb(6333)0]=6332.69-0.18+0.17±0.03±0.22 MeV, respectively, with a mass splitting of Δm=5.41-0.27+0.26±0.12 MeV, where the uncertainties are statistical, systematic, and due to the Λb0 mass measurement. The measured natural widths of these states are consistent with zero, with upper limits of Γ[Ξb(6327)0]<2.20(2.56) and Γ[Ξb(6333)0]<1.60(1.92) MeV at a 90% (95%) credibility level. The significance of the two-peak hypothesis is larger than nine (five) Gaussian standard deviations compared to the no-peak (one-peak) hypothesis. The masses, widths, and resonant structure of the new states are in good agreement with the expectations for a doublet of 1D Ξb0 resonances

    Measurement of the Λb0Λ(1520)μ+μ\Lambda_{b}^{0}\to \Lambda(1520) \mu^{+}\mu^{-} differential branching fraction

    Get PDF
    The branching fraction of the rare decay Λb0Λ(1520)μ+μ\Lambda_{b}^{0}\to \Lambda(1520) \mu^{+}\mu^{-} is measured for the first time, in the squared dimuon mass intervals, q2q^2, excluding the J/ψJ/\psi and ψ(2S)\psi(2S) regions. The data sample analyzed was collected by the LHCb experiment at center-of-mass energies of 7, 8, and 13 TeV, corresponding to a total integrated luminosity of $9\ \mathrm{fb}^{-1}.Theresultinthehighest. The result in the highest q^{2}interval, interval, q^{2} >15.0\ \mathrm{GeV}^2/c^4$, where theoretical predictions have the smallest model dependence, agrees with the predictions.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-050.html (LHCb public pages

    Angular Analysis of the B+ -> K*(+)mu(+) mu(-) Decay

    Get PDF
    We present an angular analysis of the B + → K * + ( → K 0 S π + ) μ + μ − decay using 9     fb − 1 of p p collision data collected with the LHCb experiment. For the first time, the full set of C P -averaged angular observables is measured in intervals of the dimuon invariant mass squared. Local deviations from standard model predictions are observed, similar to those in previous LHCb analyses of the isospin-partner B 0 → K * 0 μ + μ − decay. The global tension is dependent on which effective couplings are considered and on the choice of theory nuisance parameters

    Precise determination of the B-s(0)-B-s(-0) oscillation frequency

    Get PDF
    Mesons comprising a beauty quark and a strange quark can oscillate between particle (B0s) and antiparticle (B0s) flavour eigenstates, with a frequency given by the mass difference between heavy and light mass eigenstates, deltams. Here we present ameasurement of deltams using B0s2DsPi decays produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The oscillation frequency is found to be deltams = 17.7683 +- 0.0051 +- 0.0032 ps-1, where the first uncertainty is statistical and the second systematic. This measurement improves upon the current deltams precision by a factor of two. We combine this result with previous LHCb measurements to determine deltams = 17.7656 +- 0.0057 ps-1, which is the legacy measurement of the original LHCb detector.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2021-005.html (LHCb public pages

    Search for the doubly heavy baryons Omega(0)(bc) and Xi(0)(bc) decaying to Lambda(+)(c)pi(-) and Xi(+)(c)pi-

    Get PDF
    Abstract available from publisher's website

    Search for rare decays of D0 mesons into two muons

    Get PDF
    A search for the very rare D 0 → μ + μ − decay is performed using data collected by the LHCb experiment in proton-proton collisions at √ s = 7 , 8, and 13 TeV, corresponding to an integrated luminosity of 9     fb − 1 . The search is optimized for D 0 mesons from D * + → D 0 π + decays but is also sensitive to D 0 mesons from other sources. No evidence for an excess of events over the expected background is observed. An upper limit on the branching fraction of this decay is set at B ( D 0 → μ + μ − ) < 3.1 × 10 − 9 at a 90% C.L. This represents the world’s most stringent limit, constraining models of physics beyond the standard model

    Measurement of the ratios of branching fractions R(D*) and R(D0)

    Get PDF
    The ratios of branching fractions R ( D ∗ ) ≡ B ( ¯ B → D ∗ τ − ¯ ν τ ) / B ( ¯ B → D ∗ μ − ¯ ν μ ) and R ( D 0 ) ≡ B ( B − → D 0 τ − ¯ ν τ ) / B ( B − → D 0 μ − ¯ ν μ ) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0     fb − 1 of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τ − → μ − ν τ ¯ ν μ . The measured values are R ( D ∗ ) = 0.281 ± 0.018 ± 0.024 and R ( D 0 ) = 0.441 ± 0.060 ± 0.066 , where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ = − 0.43 . The results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the standard model
    corecore