536 research outputs found

    Opening the Word-Gate: The Innovative Style of a Korean Shaman

    Get PDF

    Time-Resolved in Situ Visualization of the Structural Response of Zeolites During Catalysis

    Get PDF
    Zeolites are three-dimensional aluminosilicates having unique properties from the size and connectivity of their sub-nanometer pores, the Si/Al ratio of the anionic framework, and the charge-balancing cations. The inhomogeneous distribution of the cations affects their catalytic performances because it influences the intra-crystalline diffusion rates of the reactants and products. However, the structural deformation regarding inhomogeneous active regions during the catalysis is not yet observed by conventional analytical tools. Here we employ in situ X-ray free electron laser-based time-resolved coherent X-ray diffraction imaging to investigate the internal deformations originating from the inhomogeneous Cu ion distributions in Cu-exchanged ZSM-5 zeolite crystals during the deoxygenation of nitrogen oxides with propene. We show that the interactions between the reactants and the active sites lead to an unusual strain distribution, confirmed by density functional theory simulations. These observations provide insights into the role of structural inhomogeneity in zeolites during catalysis and will assist the future design of zeolites for their applications

    The multiplex bead array approach to identifying serum biomarkers associated with breast cancer

    Get PDF
    Introduction Breast cancer is the most common type of cancer seen in women in western countries. Thus, diagnostic modalities sensitive to early-stage breast cancer are needed. Antibody-based array platforms of a data-driven type, which are expected to facilitate more rapid and sensitive detection of novel biomarkers, have emerged as a direct, rapid means for profiling cancer-specific signatures using small samples. In line with this concept, our group constructed an antibody bead array panel for 35 analytes that were selected during the discovery step. This study was aimed at testing the performance of this 35-plex array panel in profiling signatures specific for primary non-metastatic breast cancer and validating its diagnostic utility in this independent population. Methods Thirty-five analytes were selected from more than 50 markers through screening steps using a serum bank consisting of 4,500 samples from various types of cancer. An antibody-bead array of 35 markers was constructed using the Luminex (TM) bead array platform. A study population consisting of 98 breast cancer patients and 96 normal subjects was analysed using this panel. Multivariate classification algorithms were used to find discriminating biomarkers and validated with another independent population of 90 breast cancer and 79 healthy controls. Results Serum concentrations of epidermal growth factor, soluble CD40-ligand and proapolipoprotein A1 were increased in breast cancer patients. High-molecular-weight-kininogen, apolipoprotein A1, soluble vascular cell adhesion molecule-1, plasminogen activator inhibitor-1, vitamin-D binding protein and vitronectin were decreased in the cancer group. Multivariate classification algorithms distinguished breast cancer patients from the normal population with high accuracy (91.8% with random forest, 91.5% with support vector machine, 87.6% with linear discriminant analysis). Combinatorial markers also detected breast cancer at an early stage with greater sensitivity. Conclusions The current study demonstrated the usefulness of the antibody-bead array approach in finding signatures specific for primary non-metastatic breast cancer and illustrated the potential for early, high sensitivity detection of breast cancer. Further validation is required before array-based technology is used routinely for early detection of breast cancer.Kenny HA, 2008, J CLIN INVEST, V118, P1367, DOI 10.1172/JCI33775Shah FD, 2008, INTEGR CANCER THER, V7, P33, DOI 10.1177/1534735407313883Carlsson A, 2008, EUR J CANCER, V44, P472, DOI 10.1016/j.ejca.2007.11.025Nolen BM, 2008, BREAST CANCER RES, V10, DOI 10.1186/bcr2096Brogren H, 2008, THROMB RES, V122, P271, DOI 10.1016/j.thromres.2008.04.008Varki A, 2007, BLOOD, V110, P1723, DOI 10.1182/blood-2006-10-053736Madsen CD, 2007, J CELL BIOL, V177, P927, DOI 10.1083/jcb.200612058Levenson VV, 2007, BBA-GEN SUBJECTS, V1770, P847, DOI 10.1016/j.bbagen.2007.01.017VAZQUEZMARTIN A, 2007, EUR J CANCER, V43, P1117GARCIA M, 2007, GLOBAL CANC FACTS FIMoore LE, 2006, CANCER EPIDEM BIOMAR, V15, P1641, DOI 10.1158/1055-9965.EPI-05-0980Borrebaeck CAK, 2006, EXPERT OPIN BIOL TH, V6, P833, DOI 10.1517/14712598.6.8.833Zannis VI, 2006, J MOL MED-JMM, V84, P276, DOI 10.1007/s00109-005-0030-4Jemal A, 2006, CA-CANCER J CLIN, V56, P106Silva HC, 2006, NEOPLASMA, V53, P538Chahed K, 2005, INT J ONCOL, V27, P1425Jain KK, 2005, EXPERT OPIN PHARMACO, V6, P1463, DOI 10.1517/14656566.6.9.1463Abe O, 2005, LANCET, V365, P1687Paradis V, 2005, HEPATOLOGY, V41, P40, DOI 10.1002/hep.20505Molina R, 2005, TUMOR BIOL, V26, P281, DOI 10.1159/000089260Furberg AS, 2005, CANCER EPIDEM BIOMAR, V14, P33Benoy IH, 2004, CLIN CANCER RES, V10, P7157Song JS, 2004, BLOOD, V104, P2065, DOI 10.1182/blood-2004-02-0449Schairer C, 2004, J NATL CANCER I, V96, P1311, DOI 10.1093/jnci/djh253Hellman K, 2004, BRIT J CANCER, V91, P319, DOI 10.1038/sj.bjc.6601944Roselli M, 2004, CLIN CANCER RES, V10, P610Zhou AW, 2003, NAT STRUCT BIOL, V10, P541, DOI 10.1038/nsb943Hapke S, 2003, BIOL CHEM, V384, P1073Miller JC, 2003, PROTEOMICS, V3, P56Amirkhosravi A, 2002, BLOOD COAGUL FIBRIN, V13, P505Bonello N, 2002, HUM REPROD, V17, P2272Li JN, 2002, CLIN CHEM, V48, P1296Louhimo J, 2002, ANTICANCER RES, V22, P1759Knezevic V, 2001, PROTEOMICS, V1, P1271Di Micco P, 2001, DIGEST LIVER DIS, V33, P546Ferrigno D, 2001, EUR RESPIR J, V17, P667Webb DJ, 2001, J CELL BIOL, V152, P741Gion M, 2001, EUR J CANCER, V37, P355Schonbeck U, 2001, CELL MOL LIFE SCI, V58, P4Blackwell K, 2000, J CLIN ONCOL, V18, P600Carriero MV, 1999, CANCER RES, V59, P5307Antman K, 1999, JAMA-J AM MED ASSOC, V281, P1470Loskutoff DJ, 1999, APMIS, V107, P54Molina R, 1998, BREAST CANCER RES TR, V51, P109Bajou K, 1998, NAT MED, V4, P923Chan DW, 1997, J CLIN ONCOL, V15, P2322Chu KC, 1996, J NATL CANCER I, V88, P1571vanDalen A, 1996, ANTICANCER RES, V16, P2345Yamamoto N, 1996, CANCER RES, V56, P2827KOCH AE, 1995, NATURE, V376, P517HADDAD JG, 1995, J STEROID BIOCHEM, V53, P579FOEKENS JA, 1994, J CLIN ONCOL, V12, P1648GEARING AJH, 1993, IMMUNOL TODAY, V14, P506HUTCHENS TW, 1993, RAPID COMMUN MASS SP, V7, P576DECLERCK PJ, 1992, J BIOL CHEM, V267, P11693GABRIJELCIC D, 1992, AGENTS ACTIONS S, V38, P350BIEGLMAYER C, 1991, TUMOR BIOL, V12, P138DNISTRIAN AM, 1991, TUMOR BIOL, V12, P82VANDALEN A, 1990, TUMOR BIOL, V11, P189KARAS M, 1988, ANAL CHEM, V60, P2299, DOI 10.1021/ac00171a028LERNER WA, 1983, INT J CANCER, V31, P463WESTGARD JO, 1981, CLIN CHEM, V27, P493TROUSSEAU A, 1865, CLIN MED HOTEL DIEU, V3, P654*R PROJ, R PROJ STAT COMP1

    Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications

    Get PDF

    Вихретоковый анизотропный термоэлектрический первичный преобразователь лучистого потока

    Get PDF
    Представлена оригинальная конструкция первичного преобразователя лучистого потока, который может служить основой для создания приемника неселективного излучения с повышенной чувствительностью

    Graphene-Based Nanocomposites for Energy Storage

    Get PDF
    Since the first report of using micromechanical cleavage method to produce graphene sheets in 2004, graphene/graphene-based nanocomposites have attracted wide attention both for fundamental aspects as well as applications in advanced energy storage and conversion systems. In comparison to other materials, graphene-based nanostructured materials have unique 2D structure, high electronic mobility, exceptional electronic and thermal conductivities, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. Therefore, they are considered as attractive materials for hydrogen (H2) storage and high-performance electrochemical energy storage devices, such as supercapacitors, rechargeable lithium (Li)-ion batteries, Li–sulfur batteries, Li–air batteries, sodium (Na)-ion batteries, Na–air batteries, zinc (Zn)–air batteries, and vanadium redox flow batteries (VRFB), etc., as they can improve the efficiency, capacity, gravimetric energy/power densities, and cycle life of these energy storage devices. In this article, recent progress reported on the synthesis and fabrication of graphene nanocomposite materials for applications in these aforementioned various energy storage systems is reviewed. Importantly, the prospects and future challenges in both scalable manufacturing and more energy storage-related applications are discussed

    Anisotropic nanomaterials: structure, growth, assembly, and functions

    Get PDF
    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications

    Search for the Chiral Magnetic Effect in Au+Au collisions at sNN=27\sqrt{s_{_{\rm{NN}}}}=27 GeV with the STAR forward Event Plane Detectors

    Full text link
    A decisive experimental test of the Chiral Magnetic Effect (CME) is considered one of the major scientific goals at the Relativistic Heavy-Ion Collider (RHIC) towards understanding the nontrivial topological fluctuations of the Quantum Chromodynamics vacuum. In heavy-ion collisions, the CME is expected to result in a charge separation phenomenon across the reaction plane, whose strength could be strongly energy dependent. The previous CME searches have been focused on top RHIC energy collisions. In this Letter, we present a low energy search for the CME in Au+Au collisions at sNN=27\sqrt{s_{_{\rm{NN}}}}=27 GeV. We measure elliptic flow scaled charge-dependent correlators relative to the event planes that are defined at both mid-rapidity η<1.0|\eta|<1.0 and at forward rapidity 2.1<η<5.12.1 < |\eta|<5.1. We compare the results based on the directed flow plane (Ψ1\Psi_1) at forward rapidity and the elliptic flow plane (Ψ2\Psi_2) at both central and forward rapidity. The CME scenario is expected to result in a larger correlation relative to Ψ1\Psi_1 than to Ψ2\Psi_2, while a flow driven background scenario would lead to a consistent result for both event planes[1,2]. In 10-50\% centrality, results using three different event planes are found to be consistent within experimental uncertainties, suggesting a flow driven background scenario dominating the measurement. We obtain an upper limit on the deviation from a flow driven background scenario at the 95\% confidence level. This work opens up a possible road map towards future CME search with the high statistics data from the RHIC Beam Energy Scan Phase-II.Comment: main: 8 pages, 5 figures; supplementary material: 2 pages, 1 figur
    corecore