133 research outputs found

    The Vlasov limit and its fluctuations for a system of particles which interact by means of a wave field

    Full text link
    In two recent publications [Commun. PDE, vol.22, p.307--335 (1997), Commun. Math. Phys., vol.203, p.1--19 (1999)], A. Komech, M. Kunze and H. Spohn studied the joint dynamics of a classical point particle and a wave type generalization of the Newtonian gravity potential, coupled in a regularized way. In the present paper the many-body dynamics of this model is studied. The Vlasov continuum limit is obtained in form equivalent to a weak law of large numbers. We also establish a central limit theorem for the fluctuations around this limit.Comment: 68 pages. Smaller corrections: two inequalities in sections 3 and two inequalities in section 4, and definition of a Banach space in appendix A1. Presentation of LLN and CLT in section 4.3 improved. Notation improve

    Indexing and efficient instance-based retrieval of process models using untanglings

    Get PDF
    Process-Aware Information Systems (PAISs) support executions of operational processes that involve people, resources, and software applications on the basis of process models. Process models describe vast, often infinite, amounts of process instances, i.e., workflows supported by the systems. With the increasing adoption of PAISs, large process model repositories emerged in companies and public organizations. These repositories constitute significant information resources. Accurate and efficient retrieval of process models and/or process instances from such repositories is interesting for multiple reasons, e.g., searching for similar models/instances, filtering, reuse, standardization, process compliance checking, verification of formal properties, etc. This paper proposes a technique for indexing process models that relies on their alternative representations, called untanglings. We show the use of untanglings for retrieval of process models based on process instances that they specify via a solution to the total executability problem. Experiments with industrial process models testify that the proposed retrieval approach is up to three orders of magnitude faster than the state of the art

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps−1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    The Physics of the B Factories

    Get PDF
    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C

    The Physics of the B Factories

    Get PDF

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Anal wall sparing effect of an endorectal balloon in 3D conformal and intensity-modulated prostate radiotherapy.

    No full text
    BACKGROUND AND PURPOSE: To investigate the anal wall (Awall) sparing effect of an endorectal balloon (ERB) in 3D conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) for prostate cancer. MATERIALS AND METHODS: In 24 patients with localized prostate carcinoma, two planning CT-scans were performed: with and without ERB. A prostate planning target volume (PTV) was defined, and the Awall was delineated, using two different methods. Three-field and 4-field 3D-CRT plans, and IMRT plans were generated with a prescription dose of 78Gy. In 144 treatment plans, the minimum dose (D(min)), maximum dose (D(max)), and mean dose (D(mean)) to the Awall were calculated, as well as the Awall volumes exposed to doses ranging from >or=20Gy to >or=70Gy (V(20)-V(70), respectively). Results : In the 3D-CRT plans, an ERB significantly reduced D(mean), D(max), and V(30)-V(70). For IMRT all investigated dose parameters were significantly reduced by the ERB. The absolute reduction of D(mean) was 12Gy in 3D-CRT and was 7.5Gy in IMRT for both methods of Awall delineation. CONCLUSIONS: Application of an ERB showed a significant Awall sparing effect in both 3D-CRT and IMRT. This may lead to reduced late anal toxicity in prostate radiotherapy

    Endorectal balloon reduces anorectal doses in post-prostatectomy intensity-modulated radiotherapy.

    No full text
    Item does not contain fulltextBACKGROUND AND PURPOSE: To investigate the effect of an endorectal balloon (ERB) on anal wall (Awall) and rectal wall (Rwall) doses in high-dose post-prostatectomy intensity-modulated radiotherapy (IMRT). MATERIALS AND METHODS: For 20 patients, referred for salvage IMRT after prostatectomy for prostate cancer, two planning CT-scans were performed: one with and one without an air-filled ERB. A planning target volume (PTV) was defined, using international guidelines. Furthermore, the Awall and Rwall were delineated. In both the scans, IMRT plans were generated with a prescribed dose of 70 Gy. The mean dose (D(mean)), maximum dose, minimum dose, and volumes exposed to doses ranging from >/= 20 to >/= 70 Gy (V(20)-V(70)) to the Awall and Rwall were calculated. Finally, inner Rwall surface areas exposed to doses ranging from >/= 20 to >/= 70 Gy (A(20)-A(70)) were calculated. Dose-parameters were compared between plans with and without ERB. RESULTS: All Awall parameters, except V(70), were significantly reduced by the ERB with an overall D(mean) reduction of 6 Gy. Absolute reductions in dose-volume parameters varied from 5% to 11%. Significantly reduced Rwall V(30), V(40), and A(40) were observed with ERB, irrespective of the target volume size. CONCLUSION: ERB application significantly reduces Awall and to a lesser degree Rwall doses in high-dose post-prostatectomy IMRT.1 december 201
    • 

    corecore