443 research outputs found

    Threshold FlipThem:when the winner does not need to take all

    Get PDF
    We examine a FlipIt game in which there are multiple resources which a monolithic attacker is trying to compromise. This extension to FlipIt was considered in a paper in GameSec 2014, and was there called FlipThem. Our analysis of such a situation is focused on the situation where the attacker’s goal is to compromise a threshold of the resources. We use our game theoretic model to enable a defender to choose the correct configuration of resources (number of resources and the threshold) so as to ensure that it makes no sense for a rational adversary to try to attack the system. This selection is made on the basis of the relative costs of the attacker and the defender

    Transmural Ultrasound-based Visualization of Patterns of Action Potential Wave Propagation in Cardiac Tissue

    Get PDF
    The pattern of action potential propagation during various tachyarrhythmias is strongly suspected to be composed of multiple re-entrant waves, but has never been imaged in detail deep within myocardial tissue. An understanding of the nature and dynamics of these waves is important in the development of appropriate electrical or pharmacological treatments for these pathological conditions. We propose a new imaging modality that uses ultrasound to visualize the patterns of propagation of these waves through the mechanical deformations they induce. The new method would have the distinct advantage of being able to visualize these waves deep within cardiac tissue. In this article, we describe one step that would be necessary in this imaging process—the conversion of these deformations into the action potential induced active stresses that produced them. We demonstrate that, because the active stress induced by an action potential is, to a good approximation, only nonzero along the local fiber direction, the problem in our case is actually overdetermined, allowing us to obtain a complete solution. Use of two- rather than three-dimensional displacement data, noise in these displacements, and/or errors in the measurements of the fiber orientations all produce substantial but acceptable errors in the solution. We conclude that the reconstruction of action potential-induced active stress from the deformation it causes appears possible, and that, therefore, the path is open to the development of the new imaging modality

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.

    Dialysis and pediatric acute kidney injury: choice of renal support modality

    Get PDF
    Dialytic intervention for infants and children with acute kidney injury (AKI) can take many forms. Whether patients are treated by intermittent hemodialysis, peritoneal dialysis or continuous renal replacement therapy depends on specific patient characteristics. Modality choice is also determined by a variety of factors, including provider preference, available institutional resources, dialytic goals and the specific advantages or disadvantages of each modality. Our approach to AKI has benefited from the derivation and generally accepted defining criteria put forth by the Acute Dialysis Quality Initiative (ADQI) group. These are known as the risk, injury, failure, loss, and end-stage renal disease (RIFLE) criteria. A modified pediatrics RIFLE (pRIFLE) criteria has recently been validated. Common defining criteria will allow comparative investigation into therapeutic benefits of different dialytic interventions. While this is an extremely important development in our approach to AKI, several fundamental questions remain. Of these, arguably, the most important are “When and what type of dialytic modality should be used in the treatment of pediatric AKI?” This review will provide an overview of the limited data with the aim of providing objective guidelines regarding modality choice for pediatric AKI. Comparisons in terms of cost, availability, safety and target group will be reviewed

    The Role of the Frank–Starling Law in the Transduction of Cellular Work to Whole Organ Pump Function: A Computational Modeling Analysis

    Get PDF
    We have developed a multi-scale biophysical electromechanics model of the rat left ventricle at room temperature. This model has been applied to investigate the relative roles of cellular scale length dependent regulators of tension generation on the transduction of work from the cell to whole organ pump function. Specifically, the role of the length dependent Ca2+ sensitivity of tension (Ca50), filament overlap tension dependence, velocity dependence of tension, and tension dependent binding of Ca2+ to Troponin C on metrics of efficient transduction of work and stress and strain homogeneity were predicted by performing simulations in the absence of each of these feedback mechanisms. The length dependent Ca50 and the filament overlap, which make up the Frank-Starling Law, were found to be the two dominant regulators of the efficient transduction of work. Analyzing the fiber velocity field in the absence of the Frank-Starling mechanisms showed that the decreased efficiency in the transduction of work in the absence of filament overlap effects was caused by increased post systolic shortening, whereas the decreased efficiency in the absence of length dependent Ca50 was caused by an inversion in the regional distribution of strain

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of s=7  TeV \sqrt{s}=7\;\mathrm{TeV} proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan β < 40
    corecore