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Abstract. We examine a FlipIt game in which there are multiple resources which
a monolithic attacker is trying to compromise. This extension to FlipIt was con-
sidered in a paper in GameSec 2014, and was there called FlipThem. Our analysis
of such a situation is focused on the situation where the attacker’s goal is to com-
promise a threshold of the resources. We use our game theoretic model to enable
a defender to choose the correct configuration of resources (number of resources
and the threshold) so as to ensure that it makes no sense for a rational adversary
to try to attack the system. This selection is made on the basis of the relative costs
of the attacker and the defender.

1 Introduction

At its heart security is a game played between an attacker and a defender; thus it is
not surprising that there have been many works which look at computer security from
the point of view of game theory [1, 9, 12, 15]. One particularly interesting example is
the FlipIt game developed by van Dijk et al [16]. In FlipIt the attacker and defender
are competing to control a resource. Both players are given just a single button each.
The attacker gets control of the resource by pressing her button, whilst the defender can
regain control by pressing his button. Pressing the button has a cost for each player, and
owning the resource has a gain.

In this work we examine the FlipIt game in the situation where the defender has mul-
tiple resources, and the attacker is trying to obtain control of as many of these resources
as possible. This was partially considered before in the paper [7], who introduced a vari-
ant of FlipIt called FlipThem in which the defender has control of multiple resources.
Instead of flipping the state of a single resource from good to bad, the attacker is trying
to flip the states of multiple resources. In [7] the authors examine the simplest situations
in which an attacker “wins” if he has control of all resources, and a defender “wins” if
she has control of at least one resource. Thus using the terminology of secret sharing
schemes the paper [7] considers only the full threshold situation.

In this paper we study non-full threshold cases. This is motivated by a number of
potential application scenarios which we now outline:

– Large web sites usually have multiple servers responding to user requests so as to
maintain high availability and response times. An APT attack on a web site may
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try to knock out a proportion of the servers so as to reduce the owners quality of
service below an acceptable level.

– Large networks contain multiple paths between different nodes; again to protect
against attacks. An attacker will not usually be successful if he knocks out a sin-
gle path, however knocking out all paths is overkill. There will be a proportion of
the paths which will result in a degradation of the network connectivity which the
attacker may want to achieve.

– In many computer systems multiple credentials are needed to access a main re-
source. Thus an attacker only needs to obtain enough credentials to compromise a
main resource. Thus modelling attacks on credentials (e.g. passwords, certificates,
etc) should really examine the case of multiple credentials in the non-full threshold
case.

– Multi-Party Computation (MPC) has always used threshold adversaries; an external
attacker trying to compromise a system protected with MPC technology will only
be interested in obtaining a threshold break above the tolerance limit of the MPC
system. In such a situation however one is interested in proactively secure MPC
systems, since when modelled by FlipThem a defender may regain control of a
compromised party.

– Related to the last point is that of fault tolerance. It is well known that Byzantine
agreement is not possible if more than n/3 of the parties are compromised. Thus
an adversary who simply wants to inject errors into a network protected by some
Byzantine agreement protocol only needs to compromise more than n/3 of the
servers.

Thus we examine variants of the FlipThem game of [7] in which an attacker is trying to
obtain control of at least t of the resources. We call this the (n, t)-FlipThem game.

Our main results are to examine Nash equilibria in the case of stochastic models
of play. These are models in which the players strategies are defined by some random
process. The random process defines, for each player, the next time point at which it
will make a play (with time being considered as continuous). In all of the models we
consider, we think of an attacker’s play as being to attack a single resource; in the case
of a stealthy defender the machine to attack at a given point in time will be random,
whereas in the case of a non-stealthy defender the attacker will always attack a non-
compromised resource. For the defender we allow two possible moves; in the first type
the defender gains control of all resources with a single play. This models the situation
where a defender might reset and reinstall a whole cloud infrastructure in one go, or
reset all credentials/passwords in a given move; we call this a full reset. In the second
type of move the defender needs to select a single resource to reset. Just like in the
case of the attacker, the defender can do this in two ways depending on whether the
attacker is stealthy or not. We call this type of defender move a single reset. This paper
introduces continuous time Markov chains as a method of finding the benefit functions
and calculating Nash equilibria of the two player partial threshold multi-party FlipIt
game, FlipThem. For full reset, it finds that the equilibria depend solely on the threshold
of the resources and the costs of play, not the number of resources involved. As the cost
for the attacker increases the necessary amount of servers (threshold) required for the



defender to maximise his benefit decreases. For single reset, the analysis is harder by
hand. However, using numerical methods, one can find analogous results.

1.1 Prior Work

The FlipIt game has attracted attention as it focuses on the situation where the attacker
always gets in; building on the modern appreciation that perimeter defence on its own
is no longer enough. For example the paper [2] examines the FlipIt game as applied to
various different situations in computer security; for example password reset strategies,
key management, cloud auditing and virtual machine refresh methodologies.

Despite its simplicity the FlipIt game is rather complex in terms of the possible
different attacker and defender strategies, and can be modified in various ways. In the
original FlipIt game both the attacker and the defender are ‘stealthy’ in the sense that
neither knows if the other controls the resource before they execute a button press. In
[13] the authors introduce a new mechanism where by a player can test who controls the
resource. The idea being to model the situation whereby investigating whether a breach
has occured is less costly than clearing up after a breach. Thus a ‘peek’/‘probe’ at the
resource state costs less than taking control of the resource. The paper [13] then moves
onto discuss situations where a resource becomes hardened over time; meaning that
every time a player moves on a resource he already controls, part of the move consists of
making it harder for the opponent to regain control of the resource. An example would
be a system administrator resetting the system to regain control and then patching the
system so the attacker can not use the same method of infiltration.

One can think of the ‘peek’/‘probe’ at the resource state from [13] as a way of
removing the stealthiness from the FlipIt game. In [8] a different approach is proposed
in which defender moves are not stealthy, i.e. an attacker knows if the defender controls
the resource. This is introduced to model situations such as password resetting, in which
an attacker knows when the password is reset (as he is no longer able to login), but
the defender may not notice that their password is compromised. As well as this non-
stealthy mode of operation the paper also introduces the idea of a defender trying to
defend against multiple (independent) attackers.

The main prior work related to the current paper is that of Laszka et al [7]. They
consider the same situation as us of multiple resources being attacked by a single mono-
lithic adversary. However, their work has a number of distinct differences. Firstly, and
most importantly, they focus on the case where an attacker wins if he controls all re-
sources, and the defender wins when he controls one resource. We on the other hand
examine a general threshold structure. Secondly, the paper of Laszka et al considers
two types of strategies defined by periodic and non-arithmetic renewal processes1. The
paper establishes some basis facts on these strategies, but does not consider construct-
ing full benefit functions for either of these strategies and nor does it find analytic Nash
equilibria for the strategies. This is due to the analytic difficulty in obtaining such for-
mulae.

1 A renewal process is called non-arithmetic if there is no positive real number d > 0 such that
the inter-arrival times are all the integer multiples of d.



Given this (relatively) negative result the paper moves onto considering strategies
arising from Markov processes. They develop a model for two resources, considering
discrete time steps and set up a linear programming solution that becomes more com-
plicated as the finite time horizon extends. We on the other hand are able to obtain
simpler analytic formulae by considering a continous Markov process. This is because
in [7] when constructing the Markov chain, they consider the state space to be the inter-
arrival times of each resource with respect to the attacker.

In our paper we set up the state space to be the number of resources compromised
at a specific (continuous) time. Thus moving from discrete to continuous time, and
Markov to Stochastic processes simplifies the analysis somewhat. Without this simpli-
fication the paper [7] looks at two specific examples; trying to find the optimal strategy
of the attacker given the strategy of the defender, and then the optimal flip rates that
maximise the benefit at the defender side given that the attacker plays optimally. Fi-
nally they briefly mention how to find a Nash equilibrium, stating there is a simple
iterative algorithm to find one but they state that algorithm will not converge for the
majority of cases.

The paper [17] also considers a number of extensions of the FlipIt paper, and much
like that of Laszka et al comments on the difficulty of obtaining analytic solutions to the
Nash equilibrium. Therefore, they adopt a simulation based method. The attackers prob-
ability of compromising increases progressively with probing, while the defender uses
a moving-target technique to erase attacker progress. The paper extends the model to
multiple resources and considers a time dependent ‘reimage’ initiated by the defender,
much like our full reset play of the defender described above. In addition [17], much
like our own work, sets up a situation of asymmetric stealth in that the attacker can
always tell when the defender has moved however the defender does not know when
the attacker has compromised the resource but finds this out when he has probes the
resource.

Having multiple resources which an attacker needs to compromise also models the
situation of a moving target defence and a number of game theoretic works are devoted
to other aspects of moving target defence including [3, 18]. Since these works are not
directly related to our own work we do not discuss them here.

2 The Multi-Party FlipIt Model

Our basic multi-party FlipIt game, or FlipThem game, consists of a defender who is
trying to protect against an attacker getting control of n different resources. It may help
the reader to notice how at each point our game degenerates to the FlipIt game when
n = 1.

At a given point in time the attacker will control a given threshold k of the resources.
The attacker is deemed to be “in control”, or have won, if k exceeds some value t. For
example in a denial-of-service attack on a web site, the web-site may still be able to
function even if 2/3 of the servers are down, thus we will set t = 2 · n/3. In the case of
an attacker trying to disrupt a consensus building network protocol, i.e. an instantiation
of the problem of Byzantine agreement, the value of t would be n/3. In the case of a
multi-party computation protocol the threshold t would correspond to the underlying



threshold tolerated by the MPC protocol; e.g. t = n/3, t = n/2 or t = n. Note,
in the case of MPC protocols, the ability of the defender to reset all resources is a
common defence against mobile adversaries, and is thus related to what is called pro-
active security in the MPC community [11].

The variable DB is the multiplicative factor of the defender’s benefit (i.e. the ben-
efit obtained per unit time), the same for the attacker’s AB . The values are potentially
distinct, since the defender could gain more (or less) than the attacker for being in con-
trol of the system for an amount of time. The values Dc and Ac are respectively the
defender and attacker’s cost per action they perform. We set d = Dc

DB
to be the ratio of

the defender’s cost and benefit. Similarly for the attacker, a = Ac

AB
. We then consider

the ratio ρ = a
d = Ac·DB

AB ·DC
. Much of our analysis will depend on whether ρ is large or

small; which itself depends on the relative ratios of the benefit/costs of the attacker and
defender. With each application scenario being different. A game where the costs are
normalized in this way we shall call a “normalized game”.

For each time period for which the attacker obtains control of t or more of the
resources it obtains a given benefit, whereas for each time period that he does not have
such control the defender obtains a benefit. In the normalized game we assume the
attacker’s benefit lies in [0, 1] and is the proportion of time that he controls the resource;
whilst the defenders benefit is the proportion of time in which they control the resource.
Thus in the normalized game the benefits always sum to one.

In all games the utility for the attacker is their benefit minus their cost of playing
(i.e. the cost of pushing the buttons), with the utility for the defender obtained in the
same manner. Therefore, the game is non-zero sum. The attacker (resp. defenders) goal
is to derive a strategy which maximises their respective utility.

In one basic normalised “Single Reset” game the defender has a set of n buttons;
there is one button on each resource which when pressed will return that resource to the
defenders control, or do nothing if the resource is already under the defenders control.
Pressing the resource’s button costs the defender a given value, which in the normalized
game is the value d. In another normalised “Full Reset” game addition there is a “master
button” which simultaneously returns all resources to the defenders control. Pressing
the master button costs the defender a value which we shall denote by Dn, the value of
which depends on n, the number of resources. The reason for having a master button is
to capture the case when resetting the entire system in one go is simpler than resetting
each resource individually. In particular we assume that d ≤ Dn. To simplify our games
we assume that the defender does not have access to the master button and the individual
resource buttons in a single game. This property could be relaxed which would result in
a much more complex analysis than that given here.

The attacker has a set of n buttons, one for each resource. When the attacker presses
a resources button it will allow the adversary control of that resource, or again do noth-
ing if the resource is already under the attackers control. The cost to the attacker of
pressing one of its buttons is a in the normalized game.

As can be inferred from the above discussion we do not assume that the defender
knows whether it controls a resource, nor do we assume that an attacker knows whether
it controls a resource at a given time point. This situation is called the two-way stealthy



situation, if we assume a defender is not stealthy (but the attacker is) we are said to be
in a one-way stealthy situation.

Throughout the paper we model a number of games. We denote FlipThemRε (n, t, d, ρ)
to be the game of partial threshold FlipThem. By abuse of notation we also think of
FlipThemRε (n, t, d, ρ) as a function which returns all the rates of play strategy pairs for
the defender and attacker that are Nash Equilibria where R ∈ {F ,S}. Here we denote
by F the full reset game and S the single reset game, both to be described in detail in
later sections. The variables n, t, d ρ and ε denote the number of resources, the thresh-
old, the defender’s cost of play, the ratio between the attacker’s and defender’s cost
and the lowest rate of play in the defender’s strategy space (ε,∞] respectively. Having
ε > 0 recognises the fact that the defender will never actually set the reset rate to 0.
It also ensures that the benefit functions are well defined for all valid attacker-defender
strategy pairs. We will not treat the choice of our ε to be strategic, it will be a very small
number, close to zero to represent that even when the attacker has given up (plays a rate
of zero) the defender will not.

We also use a function OptRN,ε(d, T , ρ) to answer the following question: Given
the ratio ρ of costs of play between the attacker and defender and a limit N for the
number of resources the defender can own, what is the best set up for the defender in
order to maximise their benefit function? The function OptRN,ε(d, T , ρ) plays the first
game FlipThemRε (n, t, d, ρ) for all n and all t subject to some constraint space T 2. The
function OptRN,ε(d, T , ρ) then finds the values of n and t which produce the greatest
possible benefit for the defender.

3 Obtaining Nash Equilibria in Continuous Time for a Stochastic
Process

In this section we analyse various different cases of our basic game FlipThemRε ( n, t, d, ρ).
To explain the basic analysis techniques in a simple example; we first examine the game
FlipThemF0 (n, n, d, ρ). In this game the defender can perform a full reset and the at-
tacker is trying to compromise all n servers (i.e. the full threshold case). We also, again
for initial simplicity and exposition purposes, assume that the defender could decide
not to play, i.e. ε = 0. A moments thought will reveal in practice that such a strategy is
not realistic. In the later sub-sections we remove these two simplifying assumptions and
examine other cases. In particular in Section 3.3 when we consider defender performing
single resets, the analysis becomes more complex.

3.1 Simple Example, FlipThemF
0 (n, n, d, ρ): Full Threshold, Full Reset

We first consider a simple example of our framework in which the time an attacker
takes to successfully compromise an individual resource follows an exponential distri-
bution with rate λ, and the defender performs a full reset, and thus regains control of
all resources, at intervals with lengths given by an exponential distribution with rate µ.
An alternative description is that individual resources are compromised on at the arrival

2 For example t ≤ n, or t ≤ n/2, or n− t ≥ B for some bound B.



times of a Poisson process with rate λ, and the state is reset at the arrival times of a
Poisson process with rate µ.

In this context we think of the attacker as being stealthy, i.e. the defender does not
know how many resources are compromised when he does a full reset. A moment’s
thought will also reveal that in this situation it makes no difference if the defender is
stealthy or not; if the defender is not stealthy then the attacker will always pick an
uncompromised resource to attack, whereas if the defender is stealthy then the attacker
is more likely to compromise an uncompromised resource by picking one which he
knows he controlled the longest time ago. Thus an attacker simply attacks each resource
in turn, given some specific ordering.

We model the number of resources compromised by the attacker at time τ as a fam-
ily of random variables X = {X(τ) : τ ≥ 0} in the finite space S = {0, . . . , n}. Since
both the defender and attacker follow memoryless strategies (with memoryless expo-
nential random variables determining the times between changes of state) the processX
is a continuous time Markov chain. Following the analysis of continuous time Markov
chains in Grimmet et al. [5], for such a process there exists an |S|×|S| generator matrix
G with entries {gij : i, j ∈ S} such that

Pr[X(τ + h) = j | X(τ) = i] =

{
1 + gii · h+ o(h), if j = i,

gij · h+ o(h), if j 6= i.

The generator matrix G for continuous time Markov chains replaces the transition ma-
trix P for discrete time Markov chains; entry gij for i 6= j is the “rate” of transition
from state i to state j. Summing equation (3.1) over j implies that

∑
j∈S gij = 0, so

that gii = −
∑
j 6=i gij ≤ 0. Basic theory [5] tells us that when the chain arrives in state

i it remains there for an amount of time following a Exponential(−gii) distribution, then
jumps to state j 6= i with probability −gij/gii.

Considering our specific example with the defender using full reset, we can consider
our model as a “birth-reset process” (by analogy with a “birth–death process”) in which

Pr[X(τ + h) = j | X(τ) = i] =


λ · h+ o(h), if j = i+ 1,

µ · h+ o(h), if j = 0,

1− (λ+ µ) · h+ o(h), if j = i,

o(h), otherwise.

Thus, gi0 = µ, gi,i+1 = λ, gii = −(µ + λ) and gij = 0 otherwise. From this the
generator matrix can be constructed:

G =



−λ λ 0 0 . . . 0 0
µ −(µ+ λ) λ 0 . . . 0 0
µ 0 −(µ+ λ) λ . . . 0 0
...

...
...

...
. . .

...
...

µ 0 0 0 . . . −(µ+ λ) λ
µ 0 0 0 . . . 0 −µ


.

Thus when the state is i ∈ {1, . . . , n−1} the system will jump to either state i+1 with
probability λ/(λ + µ) (when the attacker compromises another resource before reset



occurs) or to state 0 with probability µ/(λ + µ) (when the reset occurs before another
resource is compromised). Clearly the chain is never going to settle in one state; it
will continue to randomly fluctuate between various states depending on the rates of
play µ and λ. However further theory [5] indicates that the long run proportion of time
the system spends in each state is given by the stationary distribution, a row vector
π = (π0, . . . , πn) such that πG = 0 and

∑n
i=0 πi = 1.

Using our specific generator matrix G it can be shown that

π =

(
µ

µ+ λ
,

µ · λ
(µ+ λ)2

, . . . ,
µ · λn−1

(µ+ λ)n
,

λn

(µ+ λ)n

)
. (1)

This tells us the proportion of time spent in each state. We therefore obtain the benefit
functions of

β′D(µ, λ) = DB · (1− πn)−Dc · µ

and
β′A(µ, λ) = AB · πn −Ac · λ

where β′D is the benefit function of the defender and β′A is the benefit function of the
attacker. We can then normalise β′D and β′A such that

βD(µ, λ) =
β′D
DB

= 1− πn − d · µ = 1− λn

(µ+ λ)n
− d · µ

and

βA(µ, λ) =
β′A
AB

= πn − a · λ =
λn

(µ+ λ)n
− a · λ,

where βD is the normalized benefit function of the defender and βA is the normalized
benefit function of the attacker.

Recall that in this model, when the defender plays he is resetting all resources at
once. Therefore, the normalized cost of the defenders move d is likely to depend on n,
the number of resources. We represent this by setting d = Dn.

Using the stationary distribution described above the benefit functions for the nor-
malized game are

βD(µ, λ) = 1− λn

(µ+ λ)n
−Dn · µ and βA(µ, λ) =

λn

(µ+ λ)n
− a · λ. (2)

We are assuming that both players are rational, in that they are both interested in max-
imising their benefit functions, and will therefore choose a rate (λ or µ) to maximise
their benefit given the behaviour of their opponent. A pair of rates at which each player
is playing optimally against the other is called a Nash equilibrium [10]. At such a point
neither player can increase their benefit by changing their rate; we are looking for pairs
(λ∗, µ∗) such that

βD(µ
∗, λ∗) = max

µ∈R+

βD(µ, λ
∗) and βA(µ

∗, λ∗) = max
λ∈R+

βA(µ
∗, λ).

Note that µ∗ = λ∗ = 0 is an equilibrium of the game defined by equations in (2). This
is an artefact of assuming the existence of a unique distribution for all µ, λ, where as



when λ = µ = 0 the Markov chain never makes any transitions. In later sections we
will bound µ below to remove this solution and for now we will search for non-trivial
solutions.

Differentiating the defender’s benefit function βD with respect to µ and solving for
µ gives at most one non-negative real solution, given by

µ̂(λ) = n+1

√
nλn

Dn
− λ

If λ < n
Dn

then this is positive, and checking the second derivative confirms this corre-
sponds to a maximum. If λ ≥ n

Dn
then ∂βD

∂µ < 0 for all µ ≥ 0 and so the optimal rate
for the defender is µ = 0. Hence the best response of the defender is given by

µ̂(λ) =

{
n+1

√
nλn

Dn
− λ if λ < n

Dn

0 if λ ≥ n
Dn

.

We now calculate
∂βA
∂λ

=
n · µ · λn−1

(µ+ λ)n+1
− a.

A closed form solution for λ which equates this to 0 is not easy to calculate directly.
However, plugging in µ̂(λ∗) we see that λ∗ must be either 0 or satisfy

n · µ̂(λ∗) · (λ∗)n−1

(µ̂(λ∗) + λ∗)n+1
− a = 0. (3)

If it were the case that λ∗ ≥ n
Dn

then µ̂(λ∗) = 0 and there are no solutions to this
equation. Note that this indicates that no equilibrium exists when the attacker’s rate is
too high — the intuition for this is if the attacker’s rate is sufficiently high, the defender
ceases to defend, and thus the attacker can do just as well by reducing their rate. Thus

at any equilibrium we must have λ∗ < n
Dn
, and therefore µ∗ = µ̂(λ∗) = n+1

√
n(λ∗)n

Dn
.

Plugging this back into equation (3) we see that either

λ∗ =
n ·Dn

n

(Dn + a)n+1
, µ∗ = µ̂(λ∗) =

n · a ·Dn−1
n

(Dn + a)n+1
, (4)

or µ∗ = λ∗ = 0. The non-zero solution will only correspond to a Nash equilibrium
if βA(µ∗, λ∗) ≥ βA(µ

∗, 0) = 0, since otherwise λ∗ is not a best response against µ∗.
Note that this is the case if

0 <
(λ∗)n

(µ∗ + λ∗)n
− a · λ∗ = (Dn)

n

(Dn + a)n+1
(Dn + a · (1− n))

i.e. if a/DN < 1/(n− 1).
In the game FlipThemF0 (n, n,Dn, ρ) we have defined ρ to be the ratio between the

attacker and defender’s costs, so that ρ = a/Dn. Therefore, the game FlipThemF0 (n, n,Dn, ρ)



returns the list {(0, 0)} for all ρ > 1/(n− 1). If ρ < 1/(n− 1) we have a further equi-
librium (µ∗, λ∗) such that the game returns the list {(0, 0), (µ∗, λ∗)} where

µ∗ =
n · ρ

Dn · (1 + ρ)n+1
, λ∗ =

n

Dn · (1 + ρ)n+1
= µ∗/ρ.

The attacker’s cost per move is independent of n, which implies that the defender will
be successful, assuming Dn

n−1 is a decreasing function of n, as long as n is large enough.
Thus for the defender to always win we require the cost of a full reset to be a sublinear
function of the number of resources.

In the case of resetting a cloud or web service this might be a reasonable assumption,
but in the case of requiring n users to reset their passwords it is likely that the cost
is a superlinear function as opposed to sublinear due to the social cost in needing to
implement such a password policy.

3.2 FlipThemF
ε (n, t, d, ρ): (n,t)-Threshold, Full Reset

We now generalize the previous easy case to the threshold case FlipThemFε ( n, t, d, ρ),
i.e. we treat the number of servers which the attacker has to compromise as a parameter
t, and in addition we bound the defenders strategy away from zero. Thus the defender
not playing at all is not considered a valid strategy3. Much of the prior analysis carries
through, since we are still assuming the defender performs a full reset on his turn. Thus
the stationary distribution is once more,

π =

(
µ

µ+ λ
, . . . ,

µ · λk−1

(µ+ λ)k
, . . . ,

µ · λn−1

(µ+ λ)n
,

λn

(µ+ λ)n

)
.

The (normalized) benefit functions are now derived from the ratio of times which the
attacker has compromised at least t resources, which simplifies due to the formula for
geometric series:

βD(µ, λ) = 1− λn

(µ+ λ)n
−
n−1∑
i=t

µ · λi

(µ+ λ)i+1
−Dn · µ

= 1− λt

(µ+ λ)t
−Dn · µ.

Using the same analysis, the attacker’s benefit is βA(µ, λ) = λt

(µ+λ)t − a · λ. Note that
these benefit functions are identical to those in the full threshold case of the previous
section, but with n replaced by t. If we were still considering the lower bound for the
defender’s rate of play ε to be zero the conclusions would be as before, but with the
modification that we use t instead of n. Since we are now considering the more realistic
assumption that ε > 0 the analysis gets slightly more involved, but remains similar to
that above. In particular

βD(µ, λ) = 1−
(

λ

λ+ µ

)t
−Dn · µ, and

∂βD
∂µ

=
t · λt

(λ+ µ)t+1
−Dn.

3 Of course if the attacker decides not to play that is considered a good thing.



This derivative is decreasing in µ, and 0 at λ·
[(

t
λ·Dn

) 1
t+1 − 1

]
. It follows immediately

that βD is a unimodal function of µ, so that the maximising µ value in [ε,∞) is given
by

µ̂(λ) = min

{
ε, λ ·

[(
t

λ ·Dn

) 1
t+1

− 1

]}
. (5)

As above, we have that

βA(µ, λ) =

(
λ

µ+ λ

)t
− a · λ and

∂βA
∂λ

=
t · µ · λt−1

(λ+ µ)t+1
− a. (6)

Thus for a particular value of µ the maximising λ must either be 0 or be a root of the
derivative. However, explicitly solving for λ does not appear to be possible, but we note
that

∂2βA
∂λ2

=
t · µ · λt−2

(λ+ µ)t+2
· [µ · (t− 1)− 2 · λ]

so that the first derivative, ∂βA

∂λ , is increasing when λ < µ · (t − 1)/2 then decreasing.
Since ∂βA

∂λ is equal to −a when λ = 0 and asymptotes to −a as λ → ∞ we have the
derivative increasing from −a to a maximum when λ = µ · (t − 1)/2 then decreasing
back to −a. The maximal value of ∂βA

∂λ is given by

4 · t · (t− 1)t−1

µ · (t+ 1)t+1
− a, (7)

which is positive only if µ is sufficiently small. As a function of λ, βA therefore initially
decreases (from 0), has a period of increase only if µ is sufficiently small, then decreases
again. It follows that βA has at most one non-zero maximum, which occurs in the region
(µ · (t − 1)/2,∞) once the derivative is decreasing, and this fixed point maximises
βA(µ, λ) on λ ∈ [0,∞) if and only if βA(µ, λ) > 0; otherwise the best response must
be λ = 0. We use these insights to explore Nash equilibria directly. First consider the
existence of a Nash equilibrium (µ∗, λ∗) with µ∗ > ε. Note that if λ∗ were equal to 0
then this would force µ∗ = ε, so it must be the case that µ∗ = µ̂(λ∗) and ∂βA

∂λ (µ∗, λ∗) =
0. It follows from (5) and (6) that

a =
t · µ∗ · λ∗t−1

(λ∗ + µ∗)t+1
= Dn ·

[(
t

λ∗ ·Dn

) 1
t+1

− 1

]

and hence
λ∗ =

t

Dn · (1 + ρ)t+1
, µ∗ =

t · ρ
Dn · (1 + ρ)t+1

. (8)

We have checked necessary conditions so far, but have still not verified that this λ∗

does correspond to a maximum of βA. As observed above, the necessary and sufficient
condition is that

0 < βA(µ
∗, λ∗) =

1 + ρ− ρ · t
(1 + ρ)t+1

.



Thus an equilibrium of this form exists when

ρ <
1

t− 1
and µ∗ =

t · ρ
Dn · (1 + ρ)t+1

> ε.

Therefore, if the ratio ρ of the attacker’s cost and defender’s cost is less than 1
t−1 then

the game FlipThemFε (n, t, d, ρ) returns the list consisting of two pairs, the trivial equi-
librium of no play (from the attacker, the defender plays at minimal rate ε) and an
equilibrium at

µ∗ =
t · ρ

Dn · (1 + ρ)t+1
, λ∗ =

t

Dn · (1 + ρ)t+1
= µ∗/ρ.

Note that if the maximal value of the derivative of βA is non-positive then no stationary
point of βA exists, and so λ will be 0. By removing all local maxima of the attacker’s
payoff function we really would expect the attacker to just stop playing; i.e. this would
be the perfect defenders strategy. From (7) we see that by taking

ε ≥ 4 · t · (t− 1)t−1

a · (t+ 1)t+1
(9)

we can ensure there is only the trivial equilibrium. Note that a simpler lower bound on
ε, which trivially implies the one above, is to take ε ≥ 4

a·(t+1) . Note that choosing a
sufficiently high ε in this way is very conservative. The rate of decrease of βA is −a at
λ = 0 and as λ → ∞, so by insisting there is no local maximum at all we ensure βA
stays well away from 0.

Picking ε to force out the attacker only makes sense if the defender’s benefit is
actually maximised. It might be the case that stopping the attacker completely is not
economically viable. Therefore, in such a case ε should be chosen to be very small,
close to zero and the other equilibria in equation (8) should be used; implying that µ∗

is less than the right hand side of equation (9). Thus an expected amount of attacker
success may be tolerated if completely eliminating such success comes at too much of
a price. Recall our function OptFN,T ,ε(d, ρ). If we fix ε = 0.01/d and set T = {t ≤ n},
and run this programmatically for ρ from 0 to 1, Fig. 1 shows the smallest n ≤ N that
maximises the defenders benefit for various N . Recall that the attacker will not play if
ρ > 1/t− 1, meaning that as ρ increases the level of threshold decreases and therefore
the number of servers required decrease. The optimum defender’s benefit occurring
when t = n. This explains the step down in Fig. 1.

We end this section by examining the classic case of a threshold situation in which
the required threshold is a constant fraction of the total number of resources. Suppose
we have t = γ · n for some constant γ ∈ (0, 1]. We have shown that the attacker
will not play if a·ρ

Dn
≥ 1

t−1 = 1
γ·n−1 . As expected we see that if the attacker needs to

compromise fewer resources, then the attacker’s cost per resource needs to be greater
for them not to play. It is intuitively obvious that the smaller the threshold the more
likely the attacker will play (and succeed).
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Fig. 1. Number of resources used by the defender to maximise his benefit given a specific ρ

3.3 FlipThemS
ε (n, t, d, ρ): (n,t)-Threshold, Single Reset

So far we have set up the model such that the defender can reset the whole system re-
gaining full control whereas the attacker compromises each resource individually. We
now consider the game FlipThemSε (n, t, d, ρ). The defender can reset a single machine
at any specific time. Consider the situation at any time point where the number of re-
sources compromised is k out of n. Assume the defender is going to reset a resource.
There are multiple strategies they could employ, they could pick a resource which they
have not reset recently, or pick a random resource, or pick a resource in a given se-
cret sequence. Here we will assume the players pick resources uniformly at random.
Thus the probability of resetting a compromised resource is k

n , and that of wastefully
resetting a non-compromised resource 1− k

n . Letting the defender’s and attacker’s rate
of play be µ and λ respectively, it is not hard to see that our generating matrix now
becomes

G =



−λ λ 0 0 . . . 0 0 0
µ
n −

(µ+(n−1)·λ)
n

(n−1)·λ
n 0 . . . 0 0 0

0 2·µ
n − (2·µ+(n−2)·λ)

n
(n−2)·λ

n . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . (n−1)·µ

n − ((n−1)·µ+λ)
n

λ
n

0 0 0 0 . . . 0 µ −µ


We then solve for the stationary distribution π = (π0, π1, . . . , πn−1, πn), by solving
πG = 0, and it can be shown by induction that

πk =
n! · λk · π0

(n− k)! · k! · µk
=

(
n
k

)
· λk · π0
µk

.



Recall, that we also need to utilize the constraint
∑n
i=0 πi = 1, which implies that we

have π0 = µn

(µ+λ)n so that we obtain the stationary distribution

π =
1

(µ+ λ)n

(
µn, n · λ · µn−1, . . . ,

(
n

k

)
· µn−k · λk, . . . , n · µ · λn−1, λn

)
.

Once again, this gives us the proportion of time spent in each state. We assume here
that the costs and benefits have already been normalised and do not depend on n the
number of resouces. Constructing these benefit functions gives

βD(µ, λ) = 1−
n∑
i=t

πi − d · µ = 1− 1

(µ+ λ)n
·
n∑
i=t

(
n

i

)
· µn−i · λi − d · µ,

βA(µ, λ) =

n∑
i=t

πi − a · λ =
1

(µ+ λ)n
·
n∑
i=t

(
n

i

)
· µn−i · λi − a · λ

We want to find the Nash Equilibria for these benefit functions. A point at which neither
player can increase their benefit by changing their rate. We want to find pairs (µ∗, λ∗)
such that

βD(µ
∗, λ∗) = max

µ∈(ε,∞)
βD(µ, λ

∗) and βA(µ
∗, λ∗) = max

λ∈R+

βA(µ
∗, λ),

where ε is the lowest rate we can expect the defender to play in order to ensure the
stationary distributions and hence benefit functions are well defined for all valid (µ, λ).
Differentiating the defender’s and attacker’s functions with respect to µ and λ respec-
tively gives,

∂βD
∂µ

=
n! · µn−t · λt

(t− 1)! · (n− t)! · (µ+ λ)n+1
− d, (10)

∂βA
∂λ

=
n! · µn−t+1 · λt−1

(t− 1)! · (n− t)! · (µ+ λ)n+1
− a. (11)

Closed form solutions for µ and λ which equate to 0 are not easy to calculate directly.
The second derivative of the attackers benefit with respect to λ is

n! · µn−t+1 · λt−2

(t− 1)! · (n− t)! · (µ+ λ)n+2
· [µ · (t− 1)− λ · (n+ 2− t)].

Thus, ∂βA

∂λ is increasing when

λ <
µ · (t− 1)

n+ 2− t
,

then decreasing. Since ∂βA

∂λ is −a at λ = 0 and asymptotes to −a as λ → ∞ we have
the derivative increasing from−a to a maximum when λ = µ·(t−1)

n+2−t and then decreasing
back to −a. The maximal value of ∂βA

∂λ is given by

n! · (t− 1)t−1

tn+1 · (n+ 2− t)t−2 · µ
− a (12)



which is positive only if µ is sufficiently small. As a function of λ, βA therefore initially
decreases (from 0), has a period of increase only if µ is sufficiently small, then decreases
again. It follows that βA has at most one non-zero maximum which occurs in the region(

µ(t− 1)

n+ 2− t
,∞
)

once the derivative is decreasing, and this fixed point maximises βA(µ, λ) on λ ∈
[0,∞) if and only if βA(µ, λ) > 0; otherwise the best response must be λ = 0. First,
like the full reset case, we consider the existence of a Nash Equilibrium (µ, λ) with
µ > ε. Since both derivatives (10) and (11) are hard to solve analytically for general n,
we used a numerical method utilizing the Maple algebra system to solve for a specific
n. The method for solving starts with defining the benefit functions in terms of µ and
λ, we then differentiate the derivatives as above and solve for µ and λ for the defender
and attacker, respectively. This provides 2 generic solutions of the form

µ̂(λ) = RootOf(f(λ)) and λ̂(µ) = RootOf(g(µ))

where f and g are polynomials. We then put these solutions back into the derivatives to
give

∂βD(µ, λ̂(µ))

∂µ
and

∂βA(µ̂(λ), λ)

∂λ

Solving these with respect to µ and λ respectively gives solutions for µ∗ and λ∗ with
respect to the costs d and a. From this we can consider the ratio ρ = a

d between the
attacker’s and defender’s costs of play. A table can be constructed to show the ratios
at which both the defender and attacker will and won’t play for various ρ. Recall that
even if the attacker is not playing, the defender must still play at some rate ε in order to
ensure control of the system. In order to calculate the defender’s benefit given a specific
ρ we must calculate the lowest rate of play for the defender when the attacker is not
playing. From equation (12), ∂βA

∂λ is never positive if

µ >
n! · (t− 1)t−1

tn+1 · (n+ 2− t)t−2 · a

Meaning no stationary point exists for the attackers benefit. From this we can see that
by taking

ε ≥ n! · (t− 1)t−1

tn+1 · (n+ 2− t)t−2 · a
we can ensure there is no equilibrium with µ∗ = ε and λ 6= 0. Recall that ρ = a

d , so
that

ε ≥ n! · (t− 1)t−1

tn+1 · (n+ 2− t)t−2 · ρ · d
This shows that if ρ is large enough, ε will be small meaning the likely strategy for the
attacker will be no play, λ = 0. So the benefit for the defender will be

βD(ε, 0) = 1− ε · d = 1− n! · (t− 1)t−1

tn+1 · (n+ 2− t)t−2 · ρ
.



However, having ρ large enough to ensure ε is small enough is an unrealistic assumption
and choosing ε like this becomes a strategic choice. As it was for the full reset case, it
is also very conservative and could be expensive for the defender. We therefore fix our
ε > 0 to be very small, close to zero before the game. We now want to ask the following
question: Given the costs of play for both defender and attacker and a limit N for the
number of resources the defender can own, what is the best set up for the defender in
order to maximise their benefit function? i.e. given ρ andN we are looking for the pairs
such that

β∗D(n
∗, t∗) = max

n≤N,t≤n
β∗D(n, t)

where β∗D(n, t) = βD(µ
∗, λ∗) is the Nash equilibrium for the specific number of re-

sources n and threshold t. Recall we defined this game to be OptSN,ε(d, T , ρ). We turn
to the method of numerical programming for this problem. Obviously, since the lowest
rate of play ε for the defender is chosen arbitrarily before the game is played, if the equi-
librium played is the trivial equilibrium then the defenders benefit is βD(ε, 0) = 1−ε·d.
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Fig. 2. Number of resources used by the defender to maximise his benefit given a specific ρ, for
T = {t ≤ n} and N = 7.

When running OptSN,ε(d, T , ρ), each round of FlipThemSε (n, t, d, ρ) played has three
possible outcomes.

– If ρ is so small the defender will not even play at the minimal rate ε.
– If ρ is “mid-size” the defender and attacker both play the non-trivial equilibrium
(µ∗, λ∗).

– If ρ is large the attacker does not play and the trivial equilibrium (ε, 0) is played.

We experimentally examined two scenarios, both in which we fix ε = 0.01/d. In the
first scenario we take T = {t ≤ n} andN = 7, in this case the function OptSN,ε(d, T , ρ)
outputs valid configurations for relatively small values of ρ, see Fig. 2. Interestingly the
output best game for a maximum defenders benefit is always a full threshold game. In
the second scenario we take T = {t < n/2}, and again N = 7. The results are given



in Fig. 3. In this case small values of ρ result in games for which the defender will not
play, for larger values of ρ we end up requiring more servers.
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Fig. 3. Number of resources used by the defender to maximise his benefit given a specific ρ, for
T = {t < n/2} and N = 7.
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