151 research outputs found
Evolutionary strategy search algorithm for fast block motion estimation
The evolutionary strategy search (ESS) algorithm is a novel method for implementing fast block motion estimation (ME) using evolutionary
strategy (ES). ESS uses a combination of ideas based on existing search strategies and employs a novel (1þsl) ES implementation. It is essentially a succession of random searches, but by controlling the placement and distribution of these searches in a simple way, it proves
possible to achieve comparable motion vector accuracy to the more established ME strategies, but with enhanced convergence speed
Parallelised max-log-MAP model
A paralleliscd max-Log-MAP model (P-max-Log-MAP) that exploits the sub-word parallelism and very long instruction word architccture of a microprocessor or a digital signal processor (DSP) is presented. The proposed model rcduccs considerably thc computational complexity
of the max-Log-MAP algorithm; valid therefore facilitates easy implementation
Energy efficient cooperative coalition selection in cluster-based capillary networks for CMIMO IoT systems
The Cooperative Multiple-input-multiple-output (CMIMO) scheme has been suggested to extend the lifetime of cluster heads (CHs) in cluster-based capillary networks in Internet of Things (IoT) systems. However, the CMIMO scheme introduces extra energy overhead to cooperative devices and further reduces the lifetime of these devices. In this paper, we first articulate the problem of cooperative coalition’s selection for CMIMO scheme to extend the average battery capacity among the whole network, and then propose to apply the quantum-inspired particle swarm optimization (QPSO) to select the optimum cooperative coalitions of each hop in the routing path. Simulation results proved that the proposed QPSO-based cooperative coalition’s selection scheme could select the optimum cooperative sender and receiver devices in every hop dynamically and outperform the virtual MIMO scheme with a fixed number of cooperative devices
Joint Source Channel Coding for H.264 Compliant Stereoscopic Video Transmission
Stereoscopic video coding research has received considerable interest over the past decade as many 3D displays have been developed. Unfortunately, the vast amount of multimedia content needed to transmit or store a stereo image pair or video sequence has hindered its use in commercial applications. As H.264 offers significantly enhanced compression and a “network-friendly” feature, we have used a H.264 compliant stereoscopic video codec [9] to compress stereo video. The data partitioning (DP) mode in NAL unit of the H.264 codec is exploited for the use of joint source and channel coding (JSCC) taking channel qualities and reliabilities into account. In this paper, we propose a framework of using unequal error protection (UEP) based JSCC scheme on the H.264 compliant stereoscopic video transmission for additive white Gaussian noise (AWGN) channel. Different levels of error protection are assigned to different partitions based on their decoding importance. Performance comparisons are made against equal error protection (EEP) schemes. Results from the simulation show that using UEP schemes, the overall quality of the decoded main and auxiliary video sequence were clearly improved in comparison with the EEP scheme at good SNR but EEP schemes outperformed UEP schemes at low SNR values
Measurement of charm production at central rapidity in proton-proton collisions at TeV
The -differential production cross sections of the prompt (B
feed-down subtracted) charmed mesons D, D, and D in the rapidity
range , and for transverse momentum GeV/, were
measured in proton-proton collisions at TeV with the ALICE
detector at the Large Hadron Collider. The analysis exploited the hadronic
decays DK, DK, DD, and their charge conjugates, and was performed on a
nb event sample collected in 2011 with a
minimum-bias trigger. The total charm production cross section at TeV and at 7 TeV was evaluated by extrapolating to the full phase space
the -differential production cross sections at TeV
and our previous measurements at TeV. The results were compared
to existing measurements and to perturbative-QCD calculations. The fraction of
cdbar D mesons produced in a vector state was also determined.Comment: 20 pages, 5 captioned figures, 4 tables, authors from page 15,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/307
Particle-yield modification in jet-like azimuthal di-hadron correlations in Pb-Pb collisions at = 2.76 TeV
The yield of charged particles associated with high- trigger
particles ( GeV/) is measured with the ALICE detector in
Pb-Pb collisions at = 2.76 TeV relative to proton-proton
collisions at the same energy. The conditional per-trigger yields are extracted
from the narrow jet-like correlation peaks in azimuthal di-hadron correlations.
In the 5% most central collisions, we observe that the yield of associated
charged particles with transverse momenta GeV/ on the
away-side drops to about 60% of that observed in pp collisions, while on the
near-side a moderate enhancement of 20-30% is found.Comment: 15 pages, 2 captioned figures, 1 table, authors from page 10,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/350
Centrality Dependence Of The Pseudorapidity Density Distribution For Charged Particles In Pb-pb Collisions At √snn=2.76tev
7264/Mai61062
Long-range Angular Correlations On The Near And Away Side In P-pb Collisions At √snn=5.02 Tev
7191/Mar294
MHC Hammer reveals genetic and non-genetic HLA disruption in cancer evolution
Disruption of the class I human leukocyte antigen (HLA) molecules has important implications for immune evasion and tumor evolution. We developed major histocompatibility complex loss of heterozygosity (LOH), allele-specific mutation and measurement of expression and repression (MHC Hammer). We identified extensive variability in HLA allelic expression and pervasive HLA alternative splicing in normal lung and breast tissue. In lung TRACERx and lung and breast TCGA cohorts, 61% of lung adenocarcinoma (LUAD), 76% of lung squamous cell carcinoma (LUSC) and 35% of estrogen receptor-positive (ER+) cancers harbored class I HLA transcriptional repression, while HLA tumor-enriched alternative splicing occurred in 31%, 11% and 15% of LUAD, LUSC and ER+ cancers. Consistent with the importance of HLA dysfunction in tumor evolution, in LUADs, HLA LOH was associated with metastasis and LUAD primary tumor regions seeding a metastasis had a lower effective neoantigen burden than non-seeding regions. These data highlight the extent and importance of HLA transcriptomic disruption, including repression and alternative splicing in cancer evolution
Representation of genomic intratumor heterogeneity in multi-region non-small cell lung cancer patient-derived xenograft models
Patient-derived xenograft (PDX) models are widely used in cancer research. To investigate the genomic fidelity of non-small cell lung cancer PDX models, we established 48 PDX models from 22 patients enrolled in the TRACERx study. Multi-region tumor sampling increased successful PDX engraftment and most models were histologically similar to their parent tumor. Whole-exome sequencing enabled comparison of tumors and PDX models and we provide an adapted mouse reference genome for improved removal of NOD scid gamma (NSG) mouse-derived reads from sequencing data. PDX model establishment caused a genomic bottleneck, with models often representing a single tumor subclone. While distinct tumor subclones were represented in independent models from the same tumor, individual PDX models did not fully recapitulate intratumor heterogeneity. On-going genomic evolution in mice contributed modestly to the genomic distance between tumors and PDX models. Our study highlights the importance of considering primary tumor heterogeneity when using PDX models and emphasizes the benefit of comprehensive tumor sampling
- …
