649 research outputs found

    Development of an occupational airborne chemical exposure matrix

    Get PDF
    Background Population-based studies of the occupational contribution to chronic obstructive pulmonary disease generally rely on self-reported exposures to vapours, gases, dusts and fumes (VGDF), which are susceptible to misclassification. Aims To develop an airborne chemical job exposure matrix (ACE JEM) for use with the UK Standard Occupational Classification (SOC 2000) system. Methods We developed the ACE JEM in stages: (i) agreement of definitions, (ii) a binary assignation of exposed/not exposed to VGDF, fibres or mists (VGDFFiM), for each of the individual 353 SOC codes and (iii) assignation of levels of exposure (L; low, medium and high) and (iv) the proportion of workers (P) likely to be exposed in each code. We then expanded the estimated exposures to include biological dusts, mineral dusts, metals, diesel fumes and asthmagens. \ud Results We assigned 186 (53%) of all SOC codes as exposed to at least one category of VGDFFiM, with 23% assigned as having medium or high exposure. We assigned over 68% of all codes as not being exposed to fibres, gases or mists. The most common exposure was to dusts (22% of codes with >50% exposed); 12% of codes were assigned exposure to fibres. We assigned higher percentages of the codes as exposed to diesel fumes (14%) compared with metals (8%). Conclusions We developed an expert-derived JEM, using a strict set of a priori defined rules. The ACE JEM could also be applied to studies to assess risks of diseases where the main route of occupational exposure is via inhalation

    <i>Gaia</i> Data Release 1. Summary of the astrometric, photometric, and survey properties

    Get PDF
    Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. Aims. A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. Methods. The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. Results. Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the HIPPARCOS and Tycho-2 catalogues – a realisation of the Tycho-Gaia Astrometric Solution (TGAS) – and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of ∼3000 Cepheid and RR-Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr−1 for the proper motions. A systematic component of ∼0.3 mas should be added to the parallax uncertainties. For the subset of ∼94 000 HIPPARCOS stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr−1. For the secondary astrometric data set, the typical uncertainty of the positions is ∼10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to ∼0.03 mag over the magnitude range 5 to 20.7. Conclusions. Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data

    Ethnicity and incidence of Hodgkin lymphoma in Canadian population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Research has shown that ethnicity is a significant predictor of Hodgkin lymphoma (HL). Variations in cancer incidence among ethnic groups in the same country can lead to important information in the search for etiological factors. Other risk factors important in the etiology of HL are medical history and exposure to pesticides. In this report we investigated the association between ethnicity and HL in the presence of medical history, and exposure to pesticides.</p> <p>Methods</p> <p>The data resulting from a matched population-based case-control study conducted in six provinces of Canada (Ontario, Quebec, Manitoba, Saskatchewan, Alberta, and British Columbia) was analyzed to determine whether or not there was any association between ethnicity and incidence of HL when adjusted for personal medical history and pesticide exposure. Information on ethnicity, personal medical history, and pesticide exposure was collected by questionnaires via mail on 316 men diagnosed with HL; and on 1506 controls. A conditional logistic regression was utilized and results were presented as odds ratios and 95% confidence intervals.</p> <p>Results</p> <p>In our study population, the distribution of ethnic groups was: 38.5% North American, 15% British, 8.4% Western European, 8.2% Eastern European, 1.7% Asian, 1.4% Scandinavian and 27% of other ethnic origin. Compared to North Americans (i) the risk of HL was greater among the Eastern European descendents (Odds Ratio (OR<sub>adj</sub>): 1.82; 95% confidence interval (CI): 1.02, 3.25) and Western European (OR<sub>adj</sub>: 1.62; 95% CI: 0.95–2.76) descent population (borderline significance at 5% level); and (ii) the risk of HL was lower in Asian descents. Diagnosis with measles (OR<sub>adj</sub>: 0.72, 95% C.I.: 0.53–0.98) and/or positive history of allergy desensitization shots (OR<sub>adj</sub>: 0.55, 95% C.I.: 0.30–0.99) were negatively associated with the incidence of HL, while diagnosis with acne (OR<sub>adj</sub>: 2.12, 95% C.I.: 1.19–3.78), shingles (OR<sub>adj</sub>: 2.41, 95% C.I.: 1.38–4.22) and positive family history of cancer (OR<sub>adj</sub>: 1.93, 95% C.I.: 1.40–2.65) increased the risk of HL. Exposure to individual herbicide dichlorprop showed an increased risk of HL (OR<sub>adj</sub>: 6.35, 95% C.I.: 1.56–25.92).</p> <p>Conclusion</p> <p>In Canada, compared to North Americans descendents, the risk of HL was significantly greater among the Eastern European and Western European descent population. Our results related to association between ethnicity and HL support the findings reported by other researchers. Our data showed that subjects who were diagnosed with measles or had allergy desensitization shots negatively associated with the incidence of HL; and other medical conditions, ever diagnosed with acne, and positive family history of cancer were positively associated with the incidence of HL.</p

    Clustering of cancer among families of cases with Hodgkin Lymphoma (HL), Multiple Myeloma (MM), Non-Hodgkin's Lymphoma (NHL), Soft Tissue Sarcoma (STS) and control subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A positive family history of chronic diseases including cancer can be used as an index of genetic and shared environmental influences. The tumours studied have several putative risk factors in common including occupational exposure to certain pesticides and a positive family history of cancer.</p> <p>Methods</p> <p>We conducted population-based studies of Hodgkin lymphoma (HL), Multiple Myeloma (MM), non-Hodgkin's Lymphoma (NHL), and Soft Tissue Sarcoma (STS) among male incident case and control subjects in six Canadian provinces. The postal questionnaire was used to collect personal demographic data, a medical history, a lifetime occupational history, smoking pattern, and the information on family history of cancer. The family history of cancer was restricted to first degree relatives and included relationship to the index subjects and the types of tumours diagnosed among relatives. The information was collected on 1528 cases (HL (n = 316), MM (n = 342), NHL (n = 513), STS (n = 357)) and 1506 age ± 2 years and province of residence matched control subjects. Conditional logistic regression analyses adjusted for the matching variables were conducted.</p> <p>Results</p> <p>We found that most families were cancer free, and a minority included two or more affected relatives. HL [(OR<sub>adj </sub>(95% CI) <b>1.79 (1.33, 2.42)]</b>, MM <b>(1.38(1.07, 1.78))</b>, NHL <b>(1.43 (1.15, 1.77)</b>), and STS cases <b>(1.30(1.00, 1.68)) </b>had higher incidence of cancer if any first degree relative was affected with cancer compared to control families. Constructing mutually exclusive categories combining "family history of cancer" (yes, no) and "pesticide exposure ≥10 hours per year" (yes, no) indicated that a positive family history was important for HL <b>(2.25(1.61, 3.15))</b>, and for the combination of the two exposures increased risk for MM <b>(1.69(1.14,2.51))</b>. Also, a positive family history of cancer both with <b>(1.72 (1.21, 2.45)) </b>and without pesticide exposure <b>(1.43(1.12, 1.83)) </b>increased risk of NHL.</p> <p>Conclusion</p> <p>HL, MM, NHL, and STS cases had higher incidence of cancer if any first degree relative affected with cancer compared to control families. A positive family history of cancer and/or shared environmental exposure to agricultural chemicals play an important role in the development of cancer.</p

    Impact of mutational profiles on response of primary oestrogen receptor-positive breast cancers to oestrogen deprivation

    Get PDF
    Pre-surgical studies allow study of the relationship between mutations and response of oestrogen receptor-positive (ER+) breast cancer to aromatase inhibitors (AIs) but have been limited to small biopsies. Here in phase I of this study, we perform exome sequencing on baseline, surgical core-cuts and blood from 60 patients (40 AI treated, 20 controls). In poor responders (based on Ki67 change), we find significantly more somatic mutations than good responders. Subclones exclusive to baseline or surgical cores occur in ∼30% of tumours. In phase II, we combine targeted sequencing on another 28 treated patients with phase I. We find six genes frequently mutated: PIK3CA, TP53, CDH1, MLL3, ABCA13 and FLG with 71% concordance between paired cores. TP53 mutations are associated with poor response. We conclude that multiple biopsies are essential for confident mutational profiling of ER+ breast cancer and TP53 mutations are associated with resistance to oestrogen deprivation therapy
    corecore