183 research outputs found

    Соотношение путей углеводного синтеза при введении свободных и фосфорилированных сахаров в листья картофеля

    Get PDF
    Показано, что регуляция путей биосинтеза углеводов может осуществляться через изменение концентрации промежуточных и конечных метаболитов. При этом одним из факторов, регулирующих направленность синтеза углеводов, является активность АДФГ- и УДФГ-пирофосфорилаз. По-видимому, регуляция работы этих ферментов может осуществляться низкомолекулярными метаболитами по принципу обратной связи

    Multi-domain active sound control and noise shielding

    Get PDF
    This paper describes an active sound control methodology based on difference potentials. The main feature of this methodology is its ability to automatically preserve “wanted” sound within a domain while canceling “unwanted” noise from outside the domain. This method of preservation of the wanted sounds by active shielding control is demonstrated with various broadband and realistic sound sources such as human voice and music in multiple domains in a one-dimensional enclosure. Unlike many other conventional active control methods, the proposed approach does not require the explicit characterization of the wanted sound to be preserved. The controls are designed based on the measurements of the total field on the boundaries of the shielded domain only, which is allowed to be multiply connected. The method is tested in a variety of experimental cases. The typical attenuation of the unwanted noise is found to be about 20 dB over a large area of the shielded domain and the original wanted sound field is preserved with errors of around 1 dB and below through a broad frequency range up to 1 kHz. © 2011 Acoustical Society of Americ

    Anti-obesity effects of chikusetsusaponins isolated from Panax japonicus rhizomes

    Get PDF
    BACKGROUND: The rhizomes of Panax japonicus are used as a folk medicine for treatment of life-style related diseases such as arteriosclerosis, hyperlipidemia, hypertension and non-insulin-dependent diabetes mellitus as a substitute for ginseng roots in China and Japan. Obesity is closely associated with life-style-related diseases. This study was performed to clarify whether chikusetsusaponins prevent obesity induced in mice by a high-fat diet for 9 weeks. METHODS: We performed two in vivo experiments. In one, female ICR mice were fed a high-fat diet with or without 1 or 3% chikusetsusaponins isolated from P. japonicus rhizomes for 9 weeks. In the other, lipid emulsion with or without chikusetsusaponins was administered orally to male Wistar rats, and then the plasma triacylglycerol level was measured 0.5 to 5 h after the orally administered lipid emulsion. For in vitro experiments, the inhibitory effects of total chikusetsusaponins and various purified chikusetsusaponins on pancreatic lipase activity were determined by measuring the rate of release of oleic acid from triolein in an assay system using triolein emulsified with lecithin. RESULTS: Total chikusetsusaponins prevented the increases in body weight and parametrial adipose tissue weight induced by a high-fat diet. Furthermore, consumption of a high-fat diet containing 1 or 3% total chikusetsusaponins significantly increased the fecal content and triacylglycerol level at day 3 compared with the high-fat diet groups. Total chikusetsusaponins inhibited the elevation of the plasma triacylglycerol level 2 h after the oral administration of the lipid emulsion. Total chikusetsusaponins, chikusetsusaponin III, 28-deglucosyl-chikusetsusaponin IV and 28-deglucosyl-chikusetsusaponin V inhibited the pancreatic lipase activity. CONCLUSION: The anti-obesity effects of chikusetsusaponins isolated from P. japonicus rhizomes in mice fed a high-fat diet may be partly mediated through delaying the intestinal absorption of dietary fat by inhibiting pancreatic lipase activity. The present study clearly indicated that the saponin fractions of P. japonicus rhizomes had a significant anti-obesity action and supports the traditional usage as a substitute drug for ginseng roots

    Cyclooxygenase 2-dependent and independent activation of Akt through casein kinase 2α contributes to human bladder cancer cell survival

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Survival rate for patients presenting muscle invasive bladder cancer is very low, and useful therapeutic target has not been identified yet. In the present study, new COX2 downstream signals involved in urothelial carcinoma cell survival were investigated <it>in vitro </it>and <it>in vivo</it>.</p> <p>Methods</p> <p>COX2 gene was silenced by siRNA transfection. Orthotopic implantation animal model and transurethral instillation of siRNA with atelocollagen was constructed to examine the effects of COX2 knockdown <it>in vivo</it>. Cell cycle was examined by flowcytoketry. Surgical specimens derived from patients with urinary bladder cancer (all were initially diagnosed cases) were used for immunohistochemical analysis of the indicated protein expression in urothelial carcinoma cells.</p> <p>Results</p> <p>Treatment with the COX2 inhibitor or knockdown of COX2 reduced expression of casein kinase (CK) 2 α, a phophorylated Akt and urokinase type plasminogen activator (uPA), resulting in p27 induction, cell cycle arrest at G1 phase and cell growth suppression in human urothelial carcinoma cell lines expressing COX2. Silencing of CK2α exhibited the similar effects. Even in UMUC3 cells lacking the COX2 gene, COX2 inhibition also inhibited cell growth through down-regulation of the CK2α-Akt/uPA axis. The mouse orthotropic bladder cancer model demonstrated that the COX2 inhibitor, meloxicam significantly reduced CK2α, phosphorylated Akt and uPA expression, whereas induced p27 by which growth and invasiveness of bladder cancer cells were strongly inhibited. Immunohistochemically, high expression of COX2, CK2α and phosphorylated form of Akt was found in high-grade, invasive carcinomas as well as carcinoma <it>in situ</it>, but not in low-grade and noninvasive phenotypes.</p> <p>Conclusions</p> <p>COX2-dependent and independent activation of CK2α-Akt/uPA signal is mainly involved in urothelial carcinoma cell survival, moreover, not only COX2 but also CK2α could be direct targets of COX2 inhibitors.</p

    Broad targeting of resistance to apoptosis in cancer

    Get PDF
    Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer

    Higher Plant Cytochrome b5 Polypeptides Modulate Fatty Acid Desaturation

    Get PDF
    BACKGROUND: Synthesis of polyunsaturated fatty acids (PUFAs) in the endoplasmic reticulum of plants typically involves the fatty acid desaturases FAD2 and FAD3, which use cytochrome b(5) (Cb5) as an electron donor. Higher plants are reported to have multiple isoforms of Cb5, in contrast to a single Cb5 in mammals and yeast. Despite the wealth of information available on the roles of FAD2 and FAD3 in PUFA synthesis, information regarding the contributions of various Cb5 isoforms in desaturase-mediated reactions is limited. RESULTS: The present functional characterization of Cb5 polypeptides revealed that all Arabidopsis Cb5 isoforms are not similarly efficient in ω-6 desaturation, as evidenced by significant variation in their product outcomes in yeast-based functional assays. On the other hand, characterization of Cb5 polypeptides of soybean (Glycine max) suggested that similar ω-6 desaturation efficiencies were shared by various isoforms. With regard to ω-3 desaturation, certain Cb5 genes of both Arabidopsis and soybean were shown to facilitate the accumulation of more desaturation products than others when co-expressed with their native FAD3. Additionally, similar trends of differential desaturation product accumulation were also observed with most Cb5 genes of both soybean and Arabidopsis even if co-expressed with non-native FAD3. CONCLUSIONS: The present study reports the first description of the differential nature of the Cb5 genes of higher plants in fatty acid desaturation and further suggests that ω-3/ω-6 desaturation product outcome is determined by the nature of both the Cb5 isoform and the fatty acid desaturases

    Expression of auxin-binding protein1 during plum fruit ontogeny supports the potential role of auxin in initiating and enhancing climacteric ripening

    Get PDF
    Auxin-binding protein1 (ABP1) is an active element involved in auxin signaling and plays critical roles in auxin-mediated plant development. Here, we report the isolation and characterization of a putative sequence from Prunus salicina L., designated PslABP1. The expected protein exhibits a similar molecular structure to that of well-characterized maize-ABP1; however, PslABP1 displays more sequence polarity in the active-binding site due to substitution of some crucial amino-acid residues predicted to be involved in auxin-binding. Further, PslABP1 expression was assessed throughout fruit ontogeny to determine its role in fruit development. Comparing the expression data with the physiological aspects that characterize fruit-development stages indicates that PslABP1 up-regulation is usually associated with the signature events that are triggered in an auxin-dependent manner such as floral induction, fruit initiation, embryogenesis, and cell division and elongation. However, the diversity in PslABP1 expression profile during the ripening process of early and late plum cultivars seems to be due to the variability of endogenous auxin levels among the two cultivars, which consequently can change the levels of autocatalytic ethylene available for the fruit to co-ordinate ripening. The effect of auxin on stimulating ethylene production and in regulating PslABP1 was investigated. Our data suggest that auxin is involved in the transition of the mature green fruit into the ripening phase and in enhancing the ripening process in both auxin- and ethylene-dependent manners thereafter
    corecore