41 research outputs found

    One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment

    Full text link
    Single electron spins coupled to multiple nuclear spins provide promising multi-qubit registers for quantum sensing and quantum networks. The obtainable level of control is determined by how well the electron spin can be selectively coupled to, and decoupled from, the surrounding nuclear spins. Here we realize a coherence time exceeding a second for a single electron spin through decoupling sequences tailored to its microscopic nuclear-spin environment. We first use the electron spin to probe the environment, which is accurately described by seven individual and six pairs of coupled carbon-13 spins. We develop initialization, control and readout of the carbon-13 pairs in order to directly reveal their atomic structure. We then exploit this knowledge to store quantum states for over a second by carefully avoiding unwanted interactions. These results provide a proof-of-principle for quantum sensing of complex multi-spin systems and an opportunity for multi-qubit quantum registers with long coherence times

    A No-Go Theorem for the Nonabelian Topological Mass Mechanism in Four Dimensions

    Get PDF
    We prove that there is no power-counting renormalizable nonabelian generalization of the abelian topological mass mechanism in four dimensions. The argument is based on the technique of consistent deformations of the master equation developed by G. Barnich and one of the authors. Recent attempts involving extra fields are also commented upon.Comment: 12 pages, latex fil

    Phases of Antisymmetric Tensor Field Theories

    Get PDF
    We study the different phases of field theories of compact antisymmetric tensors of rank h1h-1 in arbitrary space-time dimensions D=d+1D=d+1. Starting in a `Coulomb' phase, topological defects of dimension dh1d-h-1 ((dh1)(d-h-1)-branes) may condense leading to a generalized `confinement' phase. If the dual theory is also compact the model may also have a third, generalized `Higgs' phase, driven by the condensation of the dual (h2)(h-2)-branes. Developing on the work of Julia and Toulouse for ordered solid-state media, we obtain the low energy effective action for these phases. Each phase has two dual descriptions in terms of antisymmetric tensors of different ranks, which are massless for the Coulomb phase but massive for the Higgs and confinement phases. We illustrate our prescription in detail for compact QED in 4D. Compact QED and O(2)O(2) models in 3D, as well as a periodic scalar field in 2D (strings on a circle), are also discussed. In this last case we show how TT-duality is maintained if one considers both worldsheet instantons and their duals. We also unify various approaches to the problem of the axion mass in 4D string models. Finally we discuss possible implications of our results for non-perturbative issues in string theory.Comment: 35 pages, harvmac (section 4 (4D QED) rewritten,extra minor corrections and one reference added

    Duality and Global Symmetries

    Get PDF
    This is a general introduction to duality in field theories. The existence and breaking of global symmetries is used as a guideline to systematically prove duality between different field theories. Systems discussed include abelian and non-abelian T-duality in string theory, abelian and nonabelian bosonization, and duality for massless and massive antisymmetric tensor field theories in arbitrary number of dimensions. Open questions regarding these techniques are also discussed. (Lectures given at 33rd Karpacz Winter School `Duality: Strings and Fields' .)Comment: 19 pages,latex,espcrc

    A randomised trial and economic evaluation of the effect of response mode on response rate, response bias, and item non-response in a survey of doctors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Surveys of doctors are an important data collection method in health services research. Ways to improve response rates, minimise survey response bias and item non-response, within a given budget, have not previously been addressed in the same study. The aim of this paper is to compare the effects and costs of three different modes of survey administration in a national survey of doctors.</p> <p>Methods</p> <p>A stratified random sample of 4.9% (2,702/54,160) of doctors undertaking clinical practice was drawn from a national directory of all doctors in Australia. Stratification was by four doctor types: general practitioners, specialists, specialists-in-training, and hospital non-specialists, and by six rural/remote categories. A three-arm parallel trial design with equal randomisation across arms was used. Doctors were randomly allocated to: online questionnaire (902); simultaneous mixed mode (a paper questionnaire and login details sent together) (900); or, sequential mixed mode (online followed by a paper questionnaire with the reminder) (900). Analysis was by intention to treat, as within each primary mode, doctors could choose either paper or online. Primary outcome measures were response rate, survey response bias, item non-response, and cost.</p> <p>Results</p> <p>The online mode had a response rate 12.95%, followed by the simultaneous mixed mode with 19.7%, and the sequential mixed mode with 20.7%. After adjusting for observed differences between the groups, the online mode had a 7 percentage point lower response rate compared to the simultaneous mixed mode, and a 7.7 percentage point lower response rate compared to sequential mixed mode. The difference in response rate between the sequential and simultaneous modes was not statistically significant. Both mixed modes showed evidence of response bias, whilst the characteristics of online respondents were similar to the population. However, the online mode had a higher rate of item non-response compared to both mixed modes. The total cost of the online survey was 38% lower than simultaneous mixed mode and 22% lower than sequential mixed mode. The cost of the sequential mixed mode was 14% lower than simultaneous mixed mode. Compared to the online mode, the sequential mixed mode was the most cost-effective, although exhibiting some evidence of response bias.</p> <p>Conclusions</p> <p>Decisions on which survey mode to use depend on response rates, response bias, item non-response and costs. The sequential mixed mode appears to be the most cost-effective mode of survey administration for surveys of the population of doctors, if one is prepared to accept a degree of response bias. Online surveys are not yet suitable to be used exclusively for surveys of the doctor population.</p

    The effect of the gravity loading countermeasure skinsuit upon movement and strength

    Get PDF
    © 2016 National Strength and Conditioning Association. Effective countermeasures against musculoskeletal deconditioning induced by microgravity and disuse are required. A simple alternative to provision of artificial gravity by centrifugation is compressive axial loading. The Russian "Pingvin" suit was the first wearable suit to apply this concept using bungee cords tethered around the shoulders and feet. However, poor loading characteristics and severe thermal and movement discomfort were reported. The gravity loading countermeasure skinsuit (GLCS) uses a bidirectional weave to generate staged axial loading from shoulders to feet, better mimicking how Earth's gravity induces progressive loading head to foot. The Mk III GLCS's loading was evaluated and tolerability assessed during maximal joint motion, ambulation, and selected strength exercises. Eight subjects (5 male and 3 female; 28 ± 3 years; 179 ± 0.1 cm and 74.8 ± 2.9 kg), having given written informed consent, had an Mk III GLCS individually tailored. Axial loading imparted, body height, joint range of motion (ROM), ambulation, and strength tests (12 repetition maximum) were performed in the GLCS and gym attire, with subjective (rating of perceived exertion, thermal comfort, movement discomfort and body control) ratings recorded throughout. Gravity loading countermeasure skinsuit provided significant axial loading when standing but significantly reduced knee (-13°), spinal (-28°) and shoulder flexion/extension ROM (-34°/-13°), in addition to Sit and Reach (-12.8 cm). No thermal issues were reported but there was an increase in subjective discomfort. Gravity loading countermeasure skinsuit did not significantly impede strength exercise, with the exception of shoulder press. The GLCS (Mk III) demonstrates potential as a countermeasure by providing tolerable, static axial loading. Furthermore, it may serve as an elasticlike strength exercise adjunct, which may have utility as a rehabilitation modality after further design refinement

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Robust integration of motion information in the fly visual system revealed by single cell photoablation

    Get PDF
    Kalb J, Egelhaaf M, Kurtz R. Robust integration of motion information in the fly visual system revealed by single cell photoablation. JOURNAL OF NEUROSCIENCE. 2006;26(30):7898-7906.In the brain, sensory information needs often to be read out from the ensemble activity of presynaptic neurons. In the most basic case, this may be accomplished by an individual postsynaptic neuron. In the visual system of the blowfly, an identified motion-sensitive spiking neuron is known to be postsynaptic to an ensemble of graded-potential presynaptic input elements. Both the presynaptic and postsynaptic neurons were shown previously to be capable of representing the velocity of preferred-direction motion reliably and linearly over a large frequency range of velocity fluctuations. Accordingly, the synaptic transfer properties of the connecting excitatory synapses between individual input elements and the postsynaptic neuron were shown to be linear over a similar range of presynaptic membrane potential fluctuations. It was not known, however, how the postsynaptic neuron integrates and reads out the presynaptic ensemble activity. We were able to compare the response properties of the integrating cell before and after eliminating individual presynaptic elements by a laser ablation technique. For most of the input elements, we found that their elimination strongly affected the activity of the postsynaptic neuron but did not degrade its performance to encode motion with constant and time-varying velocity. Our results suggest that the integration of individual synaptic inputs within the neural circuit operates with some redundancy. This feature might help the postsynaptic neuron to encode in a highly robust way the direction and the velocity of self-motion of the animal
    corecore