913 research outputs found

    Classical electrodynamics of point charges

    Get PDF
    A simple mathematical procedure is introduced which allows redefining in an exact way divergent integrals and limits that appear in the basic equations of classical electrodynamics with point charges. In this way all divergences are at once removed without affecting the locality and the relativistic covariance of the theory, and with no need for mass renormalization. The procedure is first used to obtain a finite expression for the electromagnetic energy-momentum of the system. We show that the relativistic Lorentz-Dirac equation can be deduced from the conservation of this electromagnetic energy-momentum plus the usual mechanical term. Then we derive a finite lagrangian, which depends on the particle variables and on the actual electromagnetic potentials at a given time. From this lagrangian the equations of motion of both particles and fields can be derived via Hamilton's variational principle. The hamiltonian formulation of the theory can be obtained in a straightforward way. This leads to an interesting comparison between the resulting divergence-free expression of the hamiltonian functional and the standard renormalization rules for perturbative quantum electrodynamics.Comment: 46 pages, REVTeX . Revised version with added comments and reference

    The Riemann-Lovelock Curvature Tensor

    Full text link
    In order to study the properties of Lovelock gravity theories in low dimensions, we define the kth-order Riemann-Lovelock tensor as a certain quantity having a total 4k-indices, which is kth-order in the Riemann curvature tensor and shares its basic algebraic and differential properties. We show that the kth-order Riemann-Lovelock tensor is determined by its traces in dimensions 2k \le D <4k. In D=2k+1 this identity implies that all solutions of pure kth-order Lovelock gravity are `Riemann-Lovelock' flat. It is verified that the static, spherically symmetric solutions of these theories, which are missing solid angle space times, indeed satisfy this flatness property. This generalizes results from Einstein gravity in D=3, which corresponds to the k=1 case. We speculate about some possible further consequences of Riemann-Lovelock curvature.Comment: 12 page

    Gauge Invariance for Generally Covariant Systems

    Full text link
    Previous analyses on the gauge invariance of the action for a generally covariant system are generalized. It is shown that if the action principle is properly improved, there is as much gauge freedom at the endpoints for an arbitrary gauge system as there is for a system with ``internal'' gauge symmetries. The key point is to correctly identify the boundary conditions for the allowed histories and to include the appropriate end-point contribution in the action. The path integral is then discussed. It is proved that by employing the improved action, one can use time-independent canonical gauges even in the case of generally covariant theories. From the point of view of the action and the path integral, there is thus no conceptual difference between general covariance and ``ordinary gauge invariance''. The discussion is illustrated in the case of the point particle, for which various canonical gauges are considered.Comment: 41 pages, ULB-PMIF-92-0

    Decay of the Cosmological Constant. Equivalence of Quantum Tunneling and Thermal Activation in Two Spacetime Dimensions

    Full text link
    We study the decay of the cosmological constant in two spacetime dimensions through production of pairs. We show that the same nucleation process looks as quantum mechanical tunneling (instanton) to one Killing observer and as thermal activation (thermalon) to another. Thus, we find another striking example of the deep interplay between gravity, thermodynamics and quantum mechanics which becomes apparent in presence of horizons.Comment: 11 pages, 6 figure

    Dyonic Anomalies

    Full text link
    We consider the problem of coupling a dyonic p-brane in d = 2p+4 space-time dimensions to a prescribed (p+2)-form field strength. This is particularly subtle when p is odd. For the case p = 1, we explicitly construct a coupling functional, which is a sum of two terms: one which is linear in the prescribed field strength, and one which describes the coupling of the brane to its self-field and takes the form of a Wess-Zumino term depending only on the embedding of the brane world-volume into space-time. We then show that this functional is well-defined only modulo a certain anomaly, related to the Euler class of the normal bundle of the brane world-volume.Comment: 7 pages; reference adde
    • …
    corecore