116 research outputs found

    Unintended effects of statins from observational studies in the general population: systematic review and meta-analysis.

    Get PDF
    BACKGROUND: Efficacy of statins has been extensively studied, with much less information reported on their unintended effects. Evidence from randomized controlled trials (RCTs) on unintended effects is often insufficient to support hypotheses generated from observational studies. We aimed to systematically assess unintended effects of statins from observational studies in general populations with comparison of the findings where possible with those derived from randomized trials. METHODS: Medline (1998 to January 2012, week 3) and Embase (1998 to 2012, week 6) were searched using the standard BMJ Cohort studies filter. The search was supplemented with reference lists of all identified studies and contact with experts in the field. We included prospective studies with a sample size larger than 1,000 participants, case control (of any size) and routine health service linkage studies of over at least one year duration. Studies in subgroups of patients or follow-up of patient case series were excluded, as well as hospital-based cohort studies. RESULTS: Ninety studies were identified, reporting on 48 different unintended effects. Statins were associated with lower risks of dementia and cognitive impairment, venous thrombo-embolism, fractures and pneumonia, but these findings were attenuated in analyses restricted to higher quality studies (respectively: OR 0.74 (95% CI 0.62 to 0.87); OR 0.92 (95% CI 0.81 to 1.03); OR 0.97 (95% CI 0.88 to 1.05); OR 0.92 (95% CI 0.83 to 1.02)); and marked heterogeneity of effects across studies remained. Statin use was not related to any increased risk of depression, common eye diseases, renal disorders or arthritis. There was evidence of an increased risk of myopathy, raised liver enzymes and diabetes (respectively: OR 2.63 (95% CI 1.50 to 4.61); OR 1.54 (95% CI 1.47 to 1.62); OR 1.31 (95% CI 0.99 to 1.73)). CONCLUSIONS: Our systematic review and meta-analyses indicate that high quality observational data can provide relevant evidence on unintended effects of statins to add to the evidence from RCTs. The absolute excess risk of the observed harmful unintended effects of statins is very small compared to the beneficial effects of statins on major cardiovascular events

    Haemocompatibility of iron oxide nanoparticles synthesized for theranostic applications: a high-sensitivity microfluidic tool

    Get PDF
    The poor heating efficiency of the most reported magnetic nanoparticles (MNPs), allied to the lack of comprehensive biocompatibility and haemodynamic studies, hampers the spread of multifunctional nanoparticles as the next generation of therapeutic bio-agents in medicine. The present work reports the synthesis and characterization, with special focus on biological/toxicological compatibility, of superparamagnetic nanoparticles with diameter around 18 nm, suitable for theranostic applications (i.e. simultaneous diagnosis and therapy of cancer). Envisioning more insights into the complex nanoparticle-red blood cells (RBCs) membrane interaction, the deformability of the human RBCs in contact with magnetic nanoparticles (MNPs) was assessed for the first time with a microfluidic extensional approach, and used as an indicator of haematological disorders in comparison with a conventional haematological test, i.e. the haemolysis analysis. Microfluidic results highlight the potential of this microfluidic tool over traditional haemolysis analysis, by detecting small increments in the rigidity of the blood cells, when traditional haemotoxicology analysis showed no significant alteration (haemolysis rates lower than 2 %). The detected rigidity has been predicted to be due to the wrapping of small MNPs by the bilayer membrane of the RBCs, which is directly related to MNPs size, shape and composition. The proposed microfluidic tool adds a new dimension into the field of nanomedicine, allowing to be applied as a highsensitivity technique capable of bringing a better understanding of the biological impact of nanoparticles developed for clinical applications.This work was financially supported by: Project POCI-01-0145-FEDER-006984 – Associate Laboratory J Nanopart Res (2016) 18:194 Page 15 of 17 194 123 LSRE-LCM funded by FEDER funds through COMPETE2020 - Programa Operacional Competitividade e Internacionalizac¸a˜o (POCI) – and by national funds through FCT - Fundac¸a˜o para a Cieˆncia e a Tecnologia. R.O.R. acknowledges the Ph.D. scholarship SFRH/BD/97658/2013 Granted by FCT. A.M.T.S acknowledges the FCT Investigator 2013 Programme (IF/01501/ 2013), with financing from the European Social Fund and the Human Potential Operational Programme. M.B. would like to thank ERDF (European Regional Development Fund) under grant PO Norte CCDR-N/ON.2 Programme. J.G. also thanks the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 600375.info:eu-repo/semantics/publishedVersio

    Ornithine uptake and the modulation of drug sensitivity in <i>Trypanosoma brucei</i>

    Get PDF
    Trypanosoma brucei, protozoan parasites that cause human African trypanosomiasis (HAT), depend on ornithine uptake and metabolism by ornithine decarboxylase (ODC) for survival. Indeed, ODC is the target of the WHO “essential medicine” eflornithine, which is antagonistic to another anti-HAT drug, suramin. Thus, ornithine uptake has important consequences in T. brucei, but the transporters have not been identified. We describe these amino acid transporters (AATs). In a heterologous expression system, TbAAT10-1 is selective for ornithine, whereas TbAAT2-4 transports both ornithine and histidine. These AATs are also necessary to maintain intracellular ornithine and polyamine levels in T. brucei, thereby decreasing sensitivity to eflornithine and increasing sensitivity to suramin. Consistent with competition for histidine, high extracellular concentrations of this amino acid phenocopied a TbAAT2-4 genetic defect. Our findings established TbAAT10-1 and TbAAT2-4 as the parasite ornithine transporters, one of which can be modulated by histidine, but both of which affect sensitivity to important anti-HAT drugs.—Macedo, J. P., Currier, R. B., Wirdnam, C., Horn, D., Alsford, S., Rentsch, D. Ornithine uptake and the modulation of drug sensitivity in Trypanosoma brucei

    Disruption of the inositol phosphorylceramide synthase gene affects Trypanosoma cruzi differentiation and infection capacity

    Get PDF
    Sphingolipids (SLs) are essential components of all eukaryotic cellular membranes. In fungi, plants and many protozoa, the primary SL is inositol-phosphorylceramide (IPC). Trypanosoma cruzi is a protozoan parasite that causes Chagas disease (CD), a chronic illness for which no vaccines or effective treatments are available. IPC synthase (IPCS) has been considered an ideal target enzyme for drug development because phosphoinositol-containing SL is absent in mammalian cells and the enzyme activity has been described in all parasite forms of T. cruzi. Furthermore, IPCS is an integral membrane protein conserved amongst other kinetoplastids, including Leishmania major, for which specific inhibitors have been identified. Using a CRISPR-Cas9 protocol, we generated T. cruzi knockout (KO) mutants in which both alleles of the IPCS gene were disrupted. We demonstrated that the lack of IPCS activity does not affect epimastigote proliferation or its susceptibility to compounds that have been identified as inhibitors of the L. major IPCS. However, disruption of the T. cruzi IPCS gene negatively affected epimastigote differentiation into metacyclic trypomastigotes as well as proliferation of intracellular amastigotes and differentiation of amastigotes into tissue culture-derived trypomastigotes. In accordance with previous studies suggesting that IPC is a membrane component essential for parasite survival in the mammalian host, we showed that T. cruzi IPCS null mutants are unable to establish an infection in vivo, even in immune deficient mice

    The ocean sampling day consortium

    Get PDF
    Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits

    Conjugating his-tagged proteins to magnetic nanoparticles: tips and challenges

    Get PDF
    Resumen del póster presentado al 5th Multistep Enzyme Catalyzed Processes Congress (MECPC), celebrado online del 13 al 16 de septiembre de 2021.The histidine tag (His-tag) is one of the most used affinity-tag for protein purification due to its small size and versatility. Agarose and sepharose beads containing nitriloacetic acid (NTA) transition metal derivatives are widely used for the purification of His-tagged proteins, thanks to their high affinity to the His-tag genetically fused to the protein of interest [1]. The same chemistry can be used to conjugate enzymes to magnetic nanoparticles (MNPs) with the aim of tuning their activity by magnetic heating [2, 3]. Within the frame of the FET-OPEN project HOTZYMES (https://www.hotzymes.eu), different MNPs have been synthetized and coated with polyacrylic acid and dimercaptosuccinic acid, and then were further functionalized with NTA-Cu2+ as His-tag chelating agent. Different proteins were expressed as His-tag variants and immobilized on the MNPs, including monomeric (superfolded GFP), dimeric (C. violaceum transaminase, CvTA; C. uda cellobiose phosphorylase, CuCbP), and tetrameric (B. stearothermophilus alcohol dehydrogenase, ADH) variants. While for the monomeric protein selected as model no difficulties in the bioconjugation processes were observed, when using dimeric or tetrameric enzymes the aggregation of the MNPs occurs very easily due to crosslinking between the nanoparticles. This colloidal destabilization of the MNPs is favored due to its high surface area and the presence of several tags per enzyme molecule. To avoid this situation, different strategies have been developed: saturation of the binding site of the nanoparticles, presence of a small percentage of imidazole in reaction, changes in the incubation conditions (pH, ionic strength, …). First positive results confirm that by playing with different factors it is possible to conjugate different His-tagged enzymes to very different MNPs in terms of size, shape, surface area, and colloidal stability. Actually, it is possible to avoid protein and MNPs aggregation while obtaining good activity yields for the conjugated enzymes and maintaining the magnetic heating capacity of the MNPs.The research for this work has received funding from the European Union (EU) project HOTZYMES (grant agreement n° 829162) under EU’s Horizon 2020 Programme Research and Innovation actions H2020-FETOPEN-2018-2019-2020-01. Authors also thank Spanish MINECO project BIO2017-84246-C2-1-R, DGA and Fondos Feder (Bionanosurf E15_17R).Peer reviewe

    NADPH Phagocyte Oxidase Knockout Mice Control Trypanosoma cruzi Proliferation, but Develop Circulatory Collapse and Succumb to Infection

    Get PDF
    •NO is considered to be a key macrophage-derived cytotoxic effector during Trypanosoma cruzi infection. On the other hand, the microbicidal properties of reactive oxygen species (ROS) are well recognized, but little importance has been attributed to them during in vivo infection with T. cruzi. In order to investigate the role of ROS in T. cruzi infection, mice deficient in NADPH phagocyte oxidase (gp91phox−/− or phox KO) were infected with Y strain of T. cruzi and the course of infection was followed. phox KO mice had similar parasitemia, similar tissue parasitism and similar levels of IFN-γ and TNF in serum and spleen cell culture supernatants, when compared to wild-type controls. However, all phox KO mice succumbed to infection between day 15 and 21 after inoculation with the parasite, while 60% of wild-type mice were alive 50 days after infection. Further investigation demonstrated increased serum levels of nitrite and nitrate (NOx) at day 15 of infection in phox KO animals, associated with a drop in blood pressure. Treatment with a NOS2 inhibitor corrected the blood pressure, implicating NOS2 in this phenomenon. We postulate that superoxide reacts with •NO in vivo, preventing blood pressure drops in wild type mice. Hence, whilst superoxide from phagocytes did not play a critical role in parasite control in the phox KO animals, its production would have an important protective effect against blood pressure decline during infection with T. cruzi
    corecore