The poor heating efficiency of the most
reported magnetic nanoparticles (MNPs), allied to the
lack of comprehensive biocompatibility and haemodynamic
studies, hampers the spread of multifunctional
nanoparticles as the next generation of
therapeutic bio-agents in medicine. The present work
reports the synthesis and characterization, with special
focus on biological/toxicological compatibility, of
superparamagnetic nanoparticles with diameter
around 18 nm, suitable for theranostic applications
(i.e. simultaneous diagnosis and therapy of cancer).
Envisioning more insights into the complex nanoparticle-red
blood cells (RBCs) membrane interaction,
the deformability of the human RBCs in contact with
magnetic nanoparticles (MNPs) was assessed for the
first time with a microfluidic extensional approach,
and used as an indicator of haematological disorders in
comparison with a conventional haematological test,
i.e. the haemolysis analysis. Microfluidic results
highlight the potential of this microfluidic tool over
traditional haemolysis analysis, by detecting small
increments in the rigidity of the blood cells, when
traditional haemotoxicology analysis showed no significant
alteration (haemolysis rates lower than 2 %).
The detected rigidity has been predicted to be due to
the wrapping of small MNPs by the bilayer membrane
of the RBCs, which is directly related to MNPs size,
shape and composition. The proposed microfluidic
tool adds a new dimension into the field of
nanomedicine, allowing to be applied as a highsensitivity
technique capable of bringing a better understanding of the biological impact of nanoparticles
developed for clinical applications.This work was financially supported by:
Project POCI-01-0145-FEDER-006984 – Associate Laboratory
J Nanopart Res (2016) 18:194 Page 15 of 17 194
123 LSRE-LCM funded by FEDER funds through COMPETE2020 -
Programa Operacional Competitividade e Internacionalizac¸a˜o
(POCI) – and by national funds through FCT - Fundac¸a˜o para a
Cieˆncia e a Tecnologia. R.O.R. acknowledges the Ph.D.
scholarship SFRH/BD/97658/2013 Granted by FCT. A.M.T.S
acknowledges the FCT Investigator 2013 Programme (IF/01501/
2013), with financing from the European Social Fund and the
Human Potential Operational Programme. M.B. would like to
thank ERDF (European Regional Development Fund) under
grant PO Norte CCDR-N/ON.2 Programme. J.G. also thanks the
European Union’s Seventh Framework Programme for research,
technological development and demonstration under grant
agreement no. 600375.info:eu-repo/semantics/publishedVersio