141 research outputs found
Recommended from our members
Developing Flexible, Networked Lighting Control Systems That Reliably Save Energy in California Buildings
An important strategy to meet California's ambitious energy efficiency goals is to use innovative wireless communications, embedded sensors, data analytics and controls to significantly reduce lighting energy use in commercial buildings. This project developed a suite of networked lighting solutions to further this goal. The technologies include a platform for low-cost sensing, distributed intelligence and communications, the “PermaMote,” which is a self-powered sensor and controller for lighting applications. The project team also developed a task ambient daylighting system that integrates sensors with data-driven daylighting control using an open communication interface, called the “Readings-At-Desk” (RAD) system. To address the problem of building occupants being confused about how to operate traditional lighting control systems, the research team created content that could be the basis for a user interface standard for lighting controls. Finally, to address the difficulty of ensuring that advanced lighting control systems actually deliver their promised energy savings, the project team developed a new method for evaluating and specifying lighting systems’ performance.
The research team validated these technologies in the laboratory, showing significant lighting energy savings, up to 73% for the PermaMote sensor system from occupancy control and daylight dimming features, compared to the same light source (LED replacement lamps) operated via simple on/off scheduling. The project team also developed a proposed standard lighting data model and user interface elements, which were contributed to the ANSI Lighting Systems Committee (C137) for standardization. Existing data models are incomplete and inconsistent, whereas the lighting-specific data model developed here is clear and comprehensive, to serve as a starting point for creating common, universally agreed upon semantic definitions of key lighting parameters, to promote interoperability. For the task on verifiable performance of lighting systems, the project team developed a more effective metric for capturing the actual energy impact of a lighting system over time — the energy usage intensity (kWh/ft2/year). Three commercial lighting systems were tested in FLEXLAB® using this new metric, and the tests show a wide range in the accuracy of the self-reported energy-use metric, from 0.5% to 28% error compared to direct measurement of lighting energy using dedicated submeters. Overall, the project team estimates that these advanced technologies can reduce California office lighting energy use by 20% (above and beyond normal advanced lighting controls mandated by Title 24), resulting in about 1,600 GWh/year in savings
Recommended from our members
Xcel Energy – LBNL ‘Beyond Widgets’ Project Workstation Specific Lighting with Daylight Dimming Controls System Program Manual
Structural discordance between neogene detachments and frontal Sevier thrusts, central Mormon Mountains, southern Nevada
Detailed geologic mapping in the Mormon Mountains of southern Nevada provides significant insight into processes of extensional tectonics developed within older compressional orogens. A newly discovered, WSW-directed low-angle normal fault, the Mormon Peak detachment, juxtaposes the highest levels of the frontal most part of the east-vergent, Mesozoic Sevier thrust belt with autochthonous crystalline basement. Palinspastic analysis suggests that the detachment initially dipped 20–25° to the west and cut discordantly across thrust faults. Nearly complete lateral removal of the hanging wall from the area has exposed a 5 km thick longitudinal cross-section through the thrust belt in the footwall, while highly attenuated remnants of the hanging wall (nowhere more than a few hundred meters thick) structurally veneer the range. The present arched configuration of the detachment resulted in part from progressive “domino-style” rotation of a few degrees while it was active, but is largely due to rotation on younger, structurally lower, basement-penetrating normal faults that initiated at high-angle.
The geometry and kinematics of normal faulting in the Mormon Mountains suggest that pre-existing thrust planes are not required for the initiation of low-angle normal faults, and even where closely overlapped by extensional tectonism, need not function as a primary control of detachment geometry. Caution must thus be exercised in interpreting low-angle normal faults of uncertain tectonic heritage such as those seen in the COCORP west-central Utah and BIRP's MOIST deep-reflection profiles. Although thrust fault reactivation has reasonably been shown to be the origin of a very few low-angle normal faults, our results indicate that it may not be as fundamental a component of orogenic architecture as it is now widely perceived to be. We conclude that while in many instances thrust fault reactivation may be both a plausible and attractive hypothesis, it may never be assumed
Recommended from our members
OpenFacadeControl: enabling integration of automated facades with other building systems
Automated facades are, for the most part, still considered as separate from other building systems throughout the design, installation, commissioning, operation, and maintenance cycle. This takes place despite the fact that their energy and comfort performance are deeply interlinked with the operation of lighting and HVAC systems. Over the last two decades, research has shown that there are significant advantages from operating facades as an integrated system with the rest of the building. Nevertheless, significant barriers prevent this type of integration becoming more common. One of them is the lack of a platform that is inexpensive to implement and that easily allows the practical implementation of integrated control algorithms across fenestration and other building systems, using a variety of communications protocols. This is particularly challenging when automated facades are installed in existing buildings, where interaction with legacy building systems that were installed over the past lifetime of the building can require a high degree of interoperability.
OpenFacadeControl (OFC) is an open-source controls framework aimed at unified control of facades and other building systems, including the sharing of third-party sensor information. Through leveraging the Volttron controls platform, it allows the integration of systems and sensors that are manufactured by different companies and that use different communications protocols into an ensemble that functions as a single system. OFC is designed to enable integrated control algorithms of varying degrees of complexity, ranging from simple, heuristic controls to more sophisticated approaches like model-predictive control. Use of a research version to test advanced lighting and shading strategies in a full-scale experimental testbed has demonstrated the ease of deploying advanced control solutions using OpenFacadeControl. This paper presents the structure of OpenFacadeControl and a demonstration case showing the use of OFC in laboratory tests of advanced lighting and fenestration controls that coordinated motorized shades communicating via the BACnet building communications standard and lights communicating via internet-protocol-based application programming interface (API), based on the readings of a shared light level sensor communicating via a different API
Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017 : a systematic analysis for the Global Burden of Disease Study 2017
Background: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk outcome pairs, and new data on risk exposure levels and risk outcome associations.
Methods: We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017.
Findings: In 2017,34.1 million (95% uncertainty interval [UI] 33.3-35.0) deaths and 121 billion (144-1.28) DALYs were attributable to GBD risk factors. Globally, 61.0% (59.6-62.4) of deaths and 48.3% (46.3-50.2) of DALYs were attributed to the GBD 2017 risk factors. When ranked by risk-attributable DALYs, high systolic blood pressure (SBP) was the leading risk factor, accounting for 10.4 million (9.39-11.5) deaths and 218 million (198-237) DALYs, followed by smoking (7.10 million [6.83-7.37] deaths and 182 million [173-193] DALYs), high fasting plasma glucose (6.53 million [5.23-8.23] deaths and 171 million [144-201] DALYs), high body-mass index (BMI; 4.72 million [2.99-6.70] deaths and 148 million [98.6-202] DALYs), and short gestation for birthweight (1.43 million [1.36-1.51] deaths and 139 million [131-147] DALYs). In total, risk-attributable DALYs declined by 4.9% (3.3-6.5) between 2007 and 2017. In the absence of demographic changes (ie, population growth and ageing), changes in risk exposure and risk-deleted DALYs would have led to a 23.5% decline in DALYs during that period. Conversely, in the absence of changes in risk exposure and risk-deleted DALYs, demographic changes would have led to an 18.6% increase in DALYs during that period. The ratios of observed risk exposure levels to exposure levels expected based on SDI (O/E ratios) increased globally for unsafe drinking water and household air pollution between 1990 and 2017. This result suggests that development is occurring more rapidly than are changes in the underlying risk structure in a population. Conversely, nearly universal declines in O/E ratios for smoking and alcohol use indicate that, for a given SDI, exposure to these risks is declining. In 2017, the leading Level 4 risk factor for age-standardised DALY rates was high SBP in four super-regions: central Europe, eastern Europe, and central Asia; north Africa and Middle East; south Asia; and southeast Asia, east Asia, and Oceania. The leading risk factor in the high-income super-region was smoking, in Latin America and Caribbean was high BMI, and in sub-Saharan Africa was unsafe sex. O/E ratios for unsafe sex in sub-Saharan Africa were notably high, and those for alcohol use in north Africa and the Middle East were notably low.
Interpretation: By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning
SNP Discovery and Chromosome Anchoring Provide the First Physically-Anchored Hexaploid Oat Map and Reveal Synteny with Model Species
A physically anchored consensus map is foundational to modern genomics research; however, construction of such a map in oat (Avena sativa L., 2n = 6x = 42) has been hindered by the size and complexity of the genome, the scarcity of robust molecular markers, and the lack of aneuploid stocks. Resources developed in this study include a modified SNP discovery method for complex genomes, a diverse set of oat SNP markers, and a novel chromosome-deficient SNP anchoring strategy. These resources were applied to build the first complete, physically-anchored consensus map of hexaploid oat. Approximately 11,000 high-confidence in silico SNPs were discovered based on nine million inter-varietal sequence reads of genomic and cDNA origin. GoldenGate genotyping of 3,072 SNP assays yielded 1,311 robust markers, of which 985 were mapped in 390 recombinant-inbred lines from six bi-parental mapping populations ranging in size from 49 to 97 progeny. The consensus map included 985 SNPs and 68 previously-published markers, resolving 21 linkage groups with a total map distance of 1,838.8 cM. Consensus linkage groups were assigned to 21 chromosomes using SNP deletion analysis of chromosome-deficient monosomic hybrid stocks. Alignments with sequenced genomes of rice and Brachypodium provide evidence for extensive conservation of genomic regions, and renewed encouragement for orthology-based genomic discovery in this important hexaploid species. These results also provide a framework for high-resolution genetic analysis in oat, and a model for marker development and map construction in other species with complex genomes and limited resources
Integrated Analysis of Residue Coevolution and Protein Structure in ABC Transporters
Intraprotein side chain contacts can couple the evolutionary process of amino acid substitution at one position to that at another. This coupling, known as residue coevolution, may vary in strength. Conserved contacts thus not only define 3-dimensional protein structure, but also indicate which residue-residue interactions are crucial to a protein’s function. Therefore, prediction of strongly coevolving residue-pairs helps clarify molecular mechanisms underlying function. Previously, various coevolution detectors have been employed separately to predict these pairs purely from multiple sequence alignments, while disregarding available structural information. This study introduces an integrative framework that improves the accuracy of such predictions, relative to previous approaches, by combining multiple coevolution detectors and incorporating structural contact information. This framework is applied to the ABC-B and ABC-C transporter families, which include the drug exporter P-glycoprotein involved in multidrug resistance of cancer cells, as well as the CFTR chloride channel linked to cystic fibrosis disease. The predicted coevolving pairs are further analyzed based on conformational changes inferred from outward- and inward-facing transporter structures. The analysis suggests that some pairs coevolved to directly regulate conformational changes of the alternating-access transport mechanism, while others to stabilize rigid-body-like components of the protein structure. Moreover, some identified pairs correspond to residues previously implicated in cystic fibrosis
A framework for the practical science necessary to restore sustainable, resilient, and biodiverse ecosystems
Demand for restoration of resilient, self-sustaining, and biodiverse natural ecosystems as a conservation measure is increasing globally; however, restoration efforts frequently fail to meet standards appropriate for this objective. Achieving these standards requires management underpinned by input from diverse scientific disciplines including ecology, biotechnology, engineering, soil science, ecophysiology, and genetics. Despite increasing restoration research activity, a gap between the immediate needs of restoration practitioners and the outputs of restoration science often limits the effectiveness of restoration programs. Regrettably, studies often fail to identify the practical issues most critical for restoration success. We propose that part of this oversight may result from the absence of a considered statement of the necessary practical restoration science questions. Here we develop a comprehensive framework of the research required to bridge this gap and guide effective restoration. We structure questions in five themes: (1) setting targets and planning for success, (2) sourcing biological material, (3) optimizing establishment, (4) facilitating growth and survival, and (5) restoring resilience, sustainability, and landscape integration. This framework will assist restoration practitioners and scientists to identify knowledge gaps and develop strategic research focused on applied outcomes. The breadth of questions highlights the importance of cross-discipline collaboration among restoration scientists, and while the program is broad, successful restoration projects have typically invested in many or most of these themes. Achieving restoration ecology's goal of averting biodiversity losses is a vast challenge: investment in appropriate science is urgently needed for ecological restoration to fulfill its potential and meet demand as a conservation tool
Conceptualising fields of action for sustainable intensification A systematic literature review and application to regional case studies
[EN] After two decades of research on sustainable intensification (SI), namely securing food production on less environmental cost, heterogeneous understandings and perspectives prevail in a broad and partly fragmented scientific literature. Structuring and consolidating contributions to provide practice-oriented guidelines are lacking. The objectives of this study are to (1) comprehensively explore the academic SI literature, (2) propose an implementation-oriented conceptual framework, and (3) demonstrate its applicability for region-specific problem settings. In a systematic literature review of 349 papers covering the international literature of 20 years of SI research, we identified SI practices and analysed temporal, spatial and disciplinary trends and foci. Based on key SI practices, a conceptual framework was developed differentiating four fields of action from farm to regional and landscape scale and from land use to structural optimisation. Its applicability to derive region specific SI solutions was successfully tested through stakeholder processes in four European case studies. Disciplinary boundaries and the separation of the temporal and spatial strands in the literature prevent a holistic address of SI. This leads to the dominance of research describing SI practices in isolation, mainly on the farm scale. Coordinated actions on the regional scale and the coupling of multiple practices are comparatively un-derrepresented. Results from the case studies demonstrate that implementation is extremely context-sensitive and thus crucially depends on the situational knowledge of farmers and stakeholders. Although, there is no 'one size fits all' solution, practitioners in all regions identified the need for integrated solutions and common action to implement suitable SI strategies at the regional landscape level and in local ecosystems.This research was financially supported by the European Commission under grant agreement 652615 and conducted in the context of the ERA-Net FACCE SURPLUS project VITAL, with the national funders NWO (Netherlands), BMBF (Germany), INIA (Spain), ANR (France).Weltin, M.; Zasada, I.; Piorr, A.; Debolini, M.; Geniaux, G.; Moreno-Pérez, OM.; Scherer, L.... (2018). Conceptualising fields of action for sustainable intensification A systematic literature review and application to regional case studies. Agriculture Ecosystems & Environment. 257:68-80. https://doi.org/10.1016/j.agee.2018.01.023S688025
Further phenotypic characterization of the primitive lineage− CD34+CD38−CD90+CD45RA− hematopoietic stem cell/progenitor cell sub-population isolated from cord blood, mobilized peripheral blood and patients with chronic myelogenous leukemia
The most primitive hematopoietic stem cell (HSC)/progenitor cell (PC) population reported to date is characterized as being Lin−CD34+CD38−CD90+CD45R. We have a long-standing interest in comparing the characteristics of hematopoietic progenitor cell populations enriched from normal subjects and patients with chronic myelogenous leukemia (CML). In order to investigate further purification of HSCs and for potential targetable differences between the very primitive normal and CML stem/PCs, we have phenotypically compared the normal and CML Lin−CD34+CD38−CD90+CD45RA− HSC/PC populations. The additional antigens analyzed were HLA-DR, the receptor tyrosine kinases c-kit and Tie2, the interleukin-3 cytokine receptor, CD33 and the activation antigen CD69, the latter of which was recently reported to be selectively elevated in cell lines expressing the Bcr-Abl tyrosine kinase. Notably, we found a strikingly low percentage of cells from the HSC/PC sub-population isolated from CML patients that were found to express the c-kit receptor (<1%) compared with the percentages of HSC/PCs expressing the c-kitR isolated from umbilical cord blood (50%) and mobilized peripheral blood (10%). Surprisingly, Tie2 receptor expression within the HSC/PC subset was extremely low from both normal and CML samples. Using in vivo transplantation studies, we provide evidence that HLA-DR, c-kitR, Tie2 and IL-3R may not be suitable markers for further partitioning of HSCs from the Lin−CD34+CD38−CD90+CD45RA− sub-population
- …
