431 research outputs found
Short-time rotational diffusion in monodisperse charge-stabilized colloidal suspensions
We investigate the combined effects of electrostatic interactions and
hydrodynamic interactions on the short-time rotational self-diffusion
coefficient in charge-stabilized suspensions. We calculate this coefficient as
a function of volume fraction for various effective particle charges and
amounts of added electrolyte. The influence of the hydrodynamic interactions on
the rotational diffusion coefficient is less pronounced for charged particles
than for uncharged ones. Salt-free suspensions are weakly influenced by
hydrodynamic interactions. For these strongly correlated systems we obtain a
quadratic volume fraction-dependence of the diffusion coefficient, which is
well explained in terms of an effective hard sphere model.Comment: 21 pages, LaTeX, 7 Postscript figures included using epsf, to appear
in Physica
Prevalence and clinical characteristics of serum neuronal cell surface antibodies in first-episode psychosis: a case-control study
Psychosis is a common presenting feature in antibody-mediated encephalitis, for which prompt recognition and treatment usually leads to remission. We aimed to investigate whether people with circumscribed schizophrenia-like illnesses have such antibodies—especially antibodies against the N-methyl-D-aspartate receptor (NMDAR)—more commonly than do healthy controls.
We recruited patients aged 14–35 years presenting to any of 35 mental health services sites across England with first-episode psychosis, less than 6 weeks of treatment with antipsychotic medication, and a score of 4 or more on at least one selected Positive and Negative Syndrome Scale (PANSS) item. Patients and controls provided venous blood samples. We completed standardised symptom rating scales (PANSS, ACE-III, GAF) at baseline, and tested serum samples for antibodies against NMDAR, LGI1, CASPR2, the GABAA receptor, and the AMPA receptor using live cell-based assays. Treating clinicians assessed outcomes of ICD diagnosis and functioning (GAF) at 6 months. We included healthy controls from the general population, recruited as part of another study in Cambridge, UK.
Between Feb 1, 2013, and Aug 31, 2014, we enrolled 228 patients with first-episode psychosis and 105 healthy controls. 20 (9%) of 228 patients had serum antibodies against one or more of the neuronal cell surface antibodies compared with four (4%) of 105 controls (unadjusted odds ratio 2·4, 95% CI 0·8–7·3). These associations remained non-significant when adjusted for current cigarette smoking, alcohol consumption, and illicit drug use. Seven (3%) patients had NMDAR antibodies compared with no controls (p=0·0204). The other antibodies did not differ between groups. Antibody-positive patients had lower PANSS positive, PANSS total, and catatonia scores than did antibody-negative patients. Patients had comparable scores on other PANSS items, ACE-III, and GAF at baseline, with no difference in outcomes at 6 months.
Some patients with first-episode psychosis had antibodies against NMDAR that might be relevant to their illness, but did not differ from patients without NMDAR antibodies in clinical characteristics. Our study suggests that the only way to detect patients with these potentially pathogenic antibodies is to screen all patients with first-episode psychosis at first presentation.Medical Research Counci
Ab-Initio Molecular Dynamics
Computer simulation methods, such as Monte Carlo or Molecular Dynamics, are
very powerful computational techniques that provide detailed and essentially
exact information on classical many-body problems. With the advent of ab-initio
molecular dynamics, where the forces are computed on-the-fly by accurate
electronic structure calculations, the scope of either method has been greatly
extended. This new approach, which unifies Newton's and Schr\"odinger's
equations, allows for complex simulations without relying on any adjustable
parameter. This review is intended to outline the basic principles as well as a
survey of the field. Beginning with the derivation of Born-Oppenheimer
molecular dynamics, the Car-Parrinello method and the recently devised
efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer
molecular dynamics, which unifies best of both schemes are discussed. The
predictive power of this novel second-generation Car-Parrinello approach is
demonstrated by a series of applications ranging from liquid metals, to
semiconductors and water. This development allows for ab-initio molecular
dynamics simulations on much larger length and time scales than previously
thought feasible.Comment: 13 pages, 3 figure
The Physics of the Colloidal Glass Transition
As one increases the concentration of a colloidal suspension, the system
exhibits a dramatic increase in viscosity. Structurally, the system resembles a
liquid, yet motions within the suspension are slow enough that it can be
considered essentially frozen. This kinetic arrest is the colloidal glass
transition. For several decades, colloids have served as a valuable model
system for understanding the glass transition in molecular systems. The spatial
and temporal scales involved allow these systems to be studied by a wide
variety of experimental techniques. The focus of this review is the current
state of understanding of the colloidal glass transition. A brief introduction
is given to important experimental techniques used to study the glass
transition in colloids. We describe features of colloidal systems near and in
glassy states, including tremendous increases in viscosity and relaxation
times, dynamical heterogeneity, and ageing, among others. We also compare and
contrast the glass transition in colloids to that in molecular liquids. Other
glassy systems are briefly discussed, as well as recently developed synthesis
techniques that will keep these systems rich with interesting physics for years
to come.Comment: 56 pages, 18 figures, Revie
How Do Spherical Diblock Copolymer Nanoparticles Grow during RAFT Alcoholic Dispersion Polymerization?
A poly(2-(dimethylamino)ethyl methacrylate) (PDMA) chain transfer agent (CTA) is used for the reversible addition–fragmentation chain transfer (RAFT) alcoholic dispersion polymerization of benzyl methacrylate (BzMA) in ethanol at 70 °C. THF GPC analysis indicated a well-controlled polymerization with molecular weight increasing linearly with conversion. GPC traces also showed high blocking efficiency with no homopolymer contamination apparent and Mw/Mn values below 1.35 in all cases. 1H NMR studies confirmed greater than 98% BzMA conversion for a target PBzMA degree of polymerization (DP) of up to 600. The PBzMA block becomes insoluble as it grows, leading to the in situ formation of sterically stabilized diblock copolymer nanoparticles via polymerization-induced self-assembly (PISA). Fixing the mean DP of the PDMA stabilizer block at 94 units and systematically varying the DP of the PBzMA block enabled a series of spherical nanoparticles of tunable diameter to be obtained. These nanoparticles were characterized by TEM, DLS, MALLS, and SAXS, with mean diameters ranging from 35 to 100 nm. The latter technique was particularly informative: data fits to a spherical micelle model enabled calculation of the core diameter, surface area occupied per copolymer chain, and the mean aggregation number (Nagg). The scaling exponent derived from a double-logarithmic plot of core diameter vs PBzMA DP suggests that the conformation of the PBzMA chains is intermediate between the collapsed and fully extended state. This is in good agreement with 1H NMR studies, which suggest that only 5−13% of the BzMA residues of the core-forming chains are solvated. The Nagg values calculated from SAXS and MALLS are in good agreement and scale approximately linearly with PBzMA DP. This suggests that spherical micelles grow in size not only as a result of the increase in copolymer molecular weight during the PISA synthesis but also by exchange of individual copolymer chains between micelles and/or by sphere–sphere fusion events
Detection of interstellar oxidaniumyl: abundant H2O+ towards the star-forming regions DR21, Sgr B2, and NGC6334
We identify a prominent absorption feature at 1115 GHz, detected in first
HIFI spectra towards high-mass star-forming regions, and interpret its
astrophysical origin. The characteristic hyperfine pattern of the H2O+
ground-state rotational transition, and the lack of other known low-energy
transitions in this frequency range, identifies the feature as H2O+ absorption
against the dust continuum background and allows us to derive the velocity
profile of the absorbing gas. By comparing this velocity profile with velocity
profiles of other tracers in the DR21 star-forming region, we constrain the
frequency of the transition and the conditions for its formation. In DR21, the
velocity distribution of H2O+ matches that of the [CII] line at 158\mu\m and of
OH cm-wave absorption, both stemming from the hot and dense clump surfaces
facing the HII-region and dynamically affected by the blister outflow. Diffuse
foreground gas dominates the absorption towards Sgr B2. The integrated
intensity of the absorption line allows us to derive lower limits to the H2O+
column density of 7.2e12 cm^-2 in NGC 6334, 2.3e13 cm^-2 in DR21, and 1.1e15
cm^-2 in Sgr B2.Comment: Accepted for publication in A&
Protein–DNA electrostatics
Gene expression and regulation rely on an apparently finely tuned set of reactions between some proteins and DNA. Such DNA-binding proteins have to find specific sequences on very long DNA molecules and they mostly do so in the absence of any active process. It has been rapidly recognized that, to achieve this task, these proteins should be efficient at both searching (i.e., sampling fast relevant parts of DNA) and finding (i.e., recognizing the specific site). A two-mode search and variants of it have been suggested since the 1970s to explain either a fast search or an efficient recognition. Combining these two properties at a phenomenological level is, however, more difficult as they appear to have antagonist roles. To overcome this difficulty, one may simply need to drop the dichotomic view inherent to the two-mode search and look more thoroughly at the set of interactions between DNA-binding proteins and a given DNA segment either specific or nonspecific. This chapter demonstrates that, in doing so in a very generic way, one may indeed find a potential reconciliation between a fast search and an efficient recognition. Although a lot remains to be done, this could be the time for a change of paradigm
- …