90 research outputs found

    Henkilöstökäsikirja : Case: Ikano Bank AB

    Get PDF
    Tämä opinnäytetyö on laadittu toimeksiantona Ikano Bank AB (julk), Suomen sivu-liikkeelle. Suomessa toimii myyntikonttori ja osa operatiivisista toiminnoista on keskitetty keskusorganisaatioon Ruotsiin. Paikalliselta organisaatiolta on puuttunut oma henkilöstökäsikirja, joka sisältää työntekijälle tärkeimpiä työsuhteeseen liittyviä asioita. Tässä työssä tarkastellaan työsuhteeseen vaikuttavia asioita lain, työehtosopimuksen sekä työturvallisuuden kannalta. On tarkoitus että työssä aloittava tai työhön palaava voi helposti tarkastaa käsikirjasta työsuhteeseen liittyviä asioita, kuten loma-ajat, palkanmaksu tai sairastuminen. Rajaukset on otettu olemassa olevasta keskusorganisaation mallista otsikkotasolla, mutta sisältö on luotu vastaamaan Suomen lainsäädäntöä, työehtosopimusta ja kirjallisuutta. Työn tutkimusmenetelmä on oikeusdogmaattinen, eli oikeustieteellinen mutta myös case- eli tapaustutkimus. Empirian kattaa oma havainnointi Ikano Bankin vakiintuneista toimintatavoista. Työn tarkoitus on olla helppolukuinen ja helposti päivitettävä versio, joka voidaan joko tulostaa tai tallentaa omalle koneelleen, jotta työntekijä voi palata sisältöön silloin kuin tarve asioiden tarkasteluun syntyy. Käsikirja varmistaa myös sen, että kaikki ovat yhdenvertaisessa asemassa tiedonjakamisen suhteen.This thesis has been prepared as a mandate for Ikano Bank AB (publ), Finland filial. Ikano Finland AB is a sales office and some of the operational functions have been placed in the central organization in Sweden. The Finnish organization has lacked its own personnel manual which includes the most important issues related to the employment relationship. This thesis investigates the issues concerning the employment law, the collective agreement, as well as occupational safety. It is intended that A new or returning employee can easily check the issues such as holiday periods, salary payment or cases of illness in the manual. Restrictions at the title level have been taken from an existing model of the central organization but the content has been created to meet the Finnish law, the collective agreement and literature. The research method is judicial but also a case- research. The empirical part is from my own observations on the established practices. The purpose of this study is to offer a manual which is easy to read and easy to up-date and which can be either printed out or downloaded to the employee's own computer, so that he/she can return to its content when needed. The manual also ensures that all employees have equal access to the information

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    Common Inflammation-Related Candidate Gene Variants and Acute Kidney Injury in 2647 Critically Ill Finnish Patients

    Get PDF
    Acute kidney injury (AKI) is a syndrome with high incidence among the critically ill. Because the clinical variables and currently used biomarkers have failed to predict the individual susceptibility to AKI, candidate gene variants for the trait have been studied. Studies about genetic predisposition to AKI have been mainly underpowered and of moderate quality. We report the association study of 27 genetic variants in a cohort of Finnish critically ill patients, focusing on the replication of associations detected with variants in genes related to inflammation, cell survival, or circulation. In this prospective, observational Finnish Acute Kidney Injury (FINNAKI) study, 2647 patients without chronic kidney disease were genotyped. We defined AKI according to Kidney Disease: Improving Global Outcomes (KDIGO) criteria. We compared severe AKI (Stages 2 and 3, n = 625) to controls (Stage 0, n = 1582). For genotyping we used iPLEX(TM) Assay (Agena Bioscience). We performed the association analyses with PLINK software, using an additive genetic model in logistic regression. Despite the numerous, although contradictory, studies about association between polymorphisms rs1800629 in TNFA and rs1800896 in IL10 and AKI, we found no association (odds ratios 1.06 (95% CI 0.89-1.28, p = 0.51) and 0.92 (95% CI 0.80-1.05, p = 0.20), respectively). Adjusting for confounders did not change the results. To conclude, we could not confirm the associations reported in previous studies in a cohort of critically ill patients.Peer reviewe

    Quantitative Subcellular Proteome and Secretome Profiling of Influenza A Virus-Infected Human Primary Macrophages

    Get PDF
    Influenza A viruses are important pathogens that cause acute respiratory diseases and annual epidemics in humans. Macrophages recognize influenza A virus infection with their pattern recognition receptors, and are involved in the activation of proper innate immune response. Here, we have used high-throughput subcellular proteomics combined with bioinformatics to provide a global view of host cellular events that are activated in response to influenza A virus infection in human primary macrophages. We show that viral infection regulates the expression and/or subcellular localization of more than one thousand host proteins at early phases of infection. Our data reveals that there are dramatic changes in mitochondrial and nuclear proteomes in response to infection. We show that a rapid cytoplasmic leakage of lysosomal proteins, including cathepsins, followed by their secretion, contributes to inflammasome activation and apoptosis seen in the infected macrophages. Also, our results demonstrate that P2X7 receptor and src tyrosine kinase activity are essential for inflammasome activation during influenza A virus infection. Finally, we show that influenza A virus infection is associated with robust secretion of different danger-associated molecular patterns (DAMPs) suggesting an important role for DAMPs in host response to influenza A virus infection. In conclusion, our high-throughput quantitative proteomics study provides important new insight into host-response against influenza A virus infection in human primary macrophages

    Variants in the fetal genome near pro-inflammatory cytokine genes on 2q13 associate with gestational duration

    Get PDF
    The duration of pregnancy is influenced by fetal and maternal genetic and non-genetic factors. Here we report a fetal genome-wide association meta-analysis of gestational duration, and early preterm, preterm, and postterm birth in 84,689 infants. One locus on chromosome 2q13 is associated with gestational duration; the association is replicated in 9,291 additional infants (combined P= 3.96 x 10(-14)). Analysis of 15,588 mother-child pairs shows that the association is driven by fetal rather than maternal genotype. Functional experiments show that the lead SNP, rs7594852, alters the binding of the HIC1 transcriptional repressor. Genes at the locus include several interleukin 1 family members with roles in pro-inflammatory pathways that are central to the process of parturition. Further understanding of the underlying mechanisms will be of great public health importance, since giving birth either before or after the window of term gestation is associated with increased morbidity and mortality.Peer reviewe

    Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits

    Get PDF
    The genetic background of childhood body mass index (BMI), and the extent to which the well-known associations of childhood BMI with adult diseases are explained by shared genetic factors, are largely unknown. We performed a genome-wide association study meta-analysis of BMI in 61,111 children aged between 2 and 10 years. Twenty-five independent loci reached genome-wide significance in the combined discovery and replication analyses. Two of these, located nearNEDD4LandSLC45A3, have not previously been reported in relation to either childhood or adult BMI. Positive genetic correlations of childhood BMI with birth weight and adult BMI, waist-to-hip ratio, diastolic blood pressure and type 2 diabetes were detected (R(g)ranging from 0.11 to 0.76, P-values Author summary Although twin studies have shown that body mass index (BMI) is highly heritable, many common genetic variants involved in the development of BMI have not yet been identified, especially in children. We studied associations of more than 40 million genetic variants with childhood BMI in 61,111 children aged between 2 and 10 years. We identified 25 genetic variants that were associated with childhood BMI. Two of these have not been implicated for BMI previously, located close to the genesNEDD4LandSLC45A3. We also show that the genetic background of childhood BMI overlaps with that of birth weight, adult BMI, waist-to-hip-ratio, diastolic blood pressure, type 2 diabetes, and age at menarche. Our results suggest that the biological processes underlying childhood BMI largely overlap with those underlying adult BMI. However, the overlap is not complete. Additionally, the genetic backgrounds of childhood BMI and other cardio-metabolic phenotypes are overlapping. This may mean that the associations of childhood BMI and later cardio-metabolic outcomes are partially explained by shared genetics, but it could also be explained by the strong association of childhood BMI with adult BMI.Peer reviewe

    The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia:design, results and future prospects

    Get PDF

    The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia : design, results and future prospects

    Get PDF
    The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.Peer reviewe

    Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors.

    Get PDF
    Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.The Fenland Study is funded by the Medical Research Council (MC_U106179471) and Wellcome Trust
    corecore