133 research outputs found

    Understanding and Finding Solutions to the Problem of Sedimentation in the National Wildlife Refuge System

    Get PDF
    The National Wildlife Refuge System (Refuge System) is a collection of public lands maintained by the U.S. Fish and Wildlife Service for migratory birds and other wildlife. Wetlands on individual National Wildlife Refuges (Refuges) may be at risk of increased sedimentation because of land use and water management practices. Increased sedimentation can reduce wetland habitat quality by altering hydrologic function, degrading water quality, and inhibiting growth of vegetation and invertebrates. On Refuges negatively affected by increased sedimentation, managers have to address complex questions about how to best remediate and mitigate the negative effects. The best way to account for these complexities is often not clear. On other Refuges, managers may not know whether sedimentation is a problem. Decision makers in the Refuge System may need to allocate resources to studying which Refuges could be at risk. Such analyses would help them understand where to direct support for managing increased sedimentation. In this paper, we summarize a case study demonstrating the use of decision-analytic tools in the development of a sedimentation management plan for Agassiz National Wildlife Refuge, Minnesota. Using what we learned from that process, we surveyed other Refuges in U.S. Fish and Wildlife Service Region 3 (an area encompassing the states of Illinois, Indiana, Iowa, Ohio, Michigan, Minnesota, Missouri, and Wisconsin) and Region 6 (an area encompassing the states of Colorado, Kansas, Montana, Nebraska, North Dakota, South Dakota, Utah, and Wyoming) about whether they experience sediment-related impacts to management. Our results show that cases of management being negatively affected by increased sedimentation are not isolated. We suggest that the Refuge System conduct a comprehensive and systematic assessment of increased sedimentation among Refuges to understand the importance of sedimentation in context with other management problems that Refuges face. The results of such an assessment could guide how the Refuge System allocates resources to studying and managing widespread stressors

    SUPPLEMENTAL PERFORMANCE ANALYSES FOR THE POTENTIAL HIGH-LEVEL NUCLEAR WASTE REPOSITORY AT YUCCA MOUNTAIN

    Get PDF
    ABSTRACT The U.S. Department of Energy (DOE) is considering the possible recommendation of a site at Yucca Mountain, Nevada, for the potential development of a geologic repository for the disposal of high-level radioactive waste and spent nuclear fuel. To facilitate public review and comment, in May 2001 the DOE released the Yucca Mountain Science and Engineering Report (S&ER) (1), which presents technical information supporting the consideration of the possible site recommendation. The report summarizes the results of more than 20 years of scientific and engineering studies. Based on internal reviews of the S&ER and its key supporting references, the Total System Performance Assessment for the Site Recommendation (TSPA-SR) (2) and the Analysis Model Reports and Process Model Reports cited therein, the DOE has recently identified and performed several types of analyses to supplement the treatment of uncertainty in support of the consideration of a possible site recommendation. The results of these new analyses are summarized in the two-volume report entitled FY01 Supplemental Science and Performance Analysis (SSPA) (3,4). The information in this report is intended to supplement, not supplant, the information contained in the S&ER. The DOE recognizes that important uncertainties will always remain in any assessment of the performance of a potential repository over thousands of years (1). One part of the DOE approach to recognizing and managing these uncertainties is a commitment to continued testing and analysis and to the continued evaluation of the technical basis supporting the possible recommendation of the site, such as the analysis contained in the SSPA. The goals of the work described here are to provide insights into the implications of newly quantified uncertainties, updated science, and evaluations of lower operating temperatures on the performance of a potential Yucca Mountain repository and to increase confidence in the results of the TSPA described in the S&ER (1). The primary tool used to evaluate the implications of the three types of supplemental information described in the SSPA (3,4) is the Yucca Mountain integrated TSPA model. WM '02 Conference, February 24-28, 2002, Tucson, AZ-pg. 2 In the SSPA two types of analyses of the performance of the potential repository were conducted using the TSPA model. First, a set of "one-off" sensitivity analyses was conducted to evaluate the effects of incorporating the updated models and representations one at a time. Then, the updated models and representations were abstracted and aggregated to produce a modified TSPA model, referred to as the supplemental TSPA model, which captures the combined effects of those alternative representations. This supplemental TSPA model was used to evaluate system performance over a range of thermal operating modes. The supplemental TSPA model results were compared with results of the TSPA-SR to provide insights into the cumulative effects of all model changes on the system results and to demonstrate that the TSPA-SR analyses were conservative in nature, i.e., that a safety margin had been built into the suite of TSPA-SR models

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity

    FungalTraits:A user-friendly traits database of fungi and fungus-like stramenopiles

    Get PDF
    The cryptic lifestyle of most fungi necessitates molecular identification of the guild in environmental studies. Over the past decades, rapid development and affordability of molecular tools have tremendously improved insights of the fungal diversity in all ecosystems and habitats. Yet, in spite of the progress of molecular methods, knowledge about functional properties of the fungal taxa is vague and interpretation of environmental studies in an ecologically meaningful manner remains challenging. In order to facilitate functional assignments and ecological interpretation of environmental studies we introduce a user friendly traits and character database FungalTraits operating at genus and species hypothesis levels. Combining the information from previous efforts such as FUNGuild and Fun(Fun) together with involvement of expert knowledge, we reannotated 10,210 and 151 fungal and Stramenopila genera, respectively. This resulted in a stand-alone spreadsheet dataset covering 17 lifestyle related traits of fungal and Stramenopila genera, designed for rapid functional assignments of environmental studies. In order to assign the trait states to fungal species hypotheses, the scientific community of experts manually categorised and assigned available trait information to 697,413 fungal ITS sequences. On the basis of those sequences we were able to summarise trait and host information into 92,623 fungal species hypotheses at 1% dissimilarity threshold

    Observation of Cosmic Ray Anisotropy with Nine Years of IceCube Data

    Get PDF

    Design of an Efficient, High-Throughput Photomultiplier Tube Testing Facility for the IceCube Upgrade

    Get PDF

    Multi-messenger searches via IceCube’s high-energy neutrinos and gravitational-wave detections of LIGO/Virgo

    Get PDF
    We summarize initial results for high-energy neutrino counterpart searches coinciding with gravitational-wave events in LIGO/Virgo\u27s GWTC-2 catalog using IceCube\u27s neutrino triggers. We did not find any statistically significant high-energy neutrino counterpart and derived upper limits on the time-integrated neutrino emission on Earth as well as the isotropic equivalent energy emitted in high-energy neutrinos for each event

    The Acoustic Module for the IceCube Upgrade

    Get PDF

    A Combined Fit of the Diffuse Neutrino Spectrum using IceCube Muon Tracks and Cascades

    Get PDF
    corecore