11 research outputs found

    Defense in Depth of Resource-Constrained Devices

    Get PDF
    The emergent next generation of computing, the so-called Internet of Things (IoT), presents significant challenges to security, privacy, and trust. The devices commonly used in IoT scenarios are often resource-constrained with reduced computational strength, limited power consumption, and stringent availability requirements. Additionally, at least in the consumer arena, time-to-market is often prioritized at the expense of quality assurance and security. An initial lack of standards has compounded the problems arising from this rapid development. However, the explosive growth in the number and types of IoT devices has now created a multitude of competing standards and technology silos resulting in a highly fragmented threat model. Tens of billions of these devices have been deployed in consumers\u27 homes and industrial settings. From smart toasters and personal health monitors to industrial controls in energy delivery networks, these devices wield significant influence on our daily lives. They are privy to highly sensitive, often personal data and responsible for real-world, security-critical, physical processes. As such, these internet-connected things are highly valuable and vulnerable targets for exploitation. Current security measures, such as reactionary policies and ad hoc patching, are not adequate at this scale. This thesis presents a multi-layered, defense in depth, approach to preventing and mitigating a myriad of vulnerabilities associated with the above challenges. To secure the pre-boot environment, we demonstrate a hardware-based secure boot process for devices lacking secure memory. We introduce a novel implementation of remote attestation backed by blockchain technologies to address hardware and software integrity concerns for the long-running, unsupervised, and rarely patched systems found in industrial IoT settings. Moving into the software layer, we present a unique method of intraprocess memory isolation as a barrier to several prevalent classes of software vulnerabilities. Finally, we exhibit work on network analysis and intrusion detection for the low-power, low-latency, and low-bandwidth wireless networks common to IoT applications. By targeting these areas of the hardware-software stack, we seek to establish a trustworthy system that extends from power-on through application runtime

    Distributed IoT Attestation via Blockchain (Extended Version)

    Get PDF
    The growing number and nature of Internet of Things (IoT) devices makes these resource-constrained appliances particularly vulnerable and increasingly impactful in their exploitation. Current estimates for the number of connected things commonly reach the tens of billions. The low-cost and limited computational strength of these devices can preclude security features. Additionally, economic forces and a lack of industry expertise in security often contribute to a rush to market with minimal consideration for security implications. It is essential that users of these emerging technologies, from consumers to IT professionals, be able to establish and retain trust in the multitude of diverse and pervasive compute devices that are ever more responsible for our critical infrastructure and personal information. Remote attestation is a well-known technique for building such trust between devices. In standard implementations, a potentially untrustworthy prover attests, using public key infrastructure, to a verifier about its configuration or properties of its current state. Attestation is often performed on an ad hoc basis with little concern for historicity. However, controls and sensors manufactured for the Industrial IoT (IIoT) may be expected to operate for decades. Even in the consumer market, so-called smart things can be expected to outlive their manufacturers. This longevity combined with limited software or firmware patching creates an ideal environment for long-lived zero-day vulnerabilities. Knowing both if a device is vulnerable and if so when it became vulnerable is a management nightmare as IoT deployments scale. For network connected machines, with access to sensitive information and real-world physical controls, maintaining some sense of a device\u27s lifecycle would be insightful. In this paper, we propose a novel attestation architecture, DAN: a distributed attestation network, utilizing blockchain to store and share device information. We present the design of this new attestation architecture, and describe a virtualized simulation, as well as a prototype system chosen to emulate an IoT deployment with a network of Raspberry Pi, Infineon TPMs, and a Hyperledger Fabric blockchain. We discuss the implications and potential challenges of such a network for various applications such as identity management, intrusion detection, forensic audits, and regulatory certification

    Fingerprinting IEEE 802.15.4 Devices with Commodity Radios

    Get PDF
    We present a reliable method of PHY-layer fingerprinting of IEEE 802.15.4-conformant nodes with commodity digital radio chips widely used in building inexpensive IEEE 802.15.4-conformant devices. Typically, PHY-layer fingerprinting requires software-defined radios that cost orders of magnitude more than the chips they can fingerprint; our method does not require a software-defined radio and uses the same inexpensive chips. For mission-critical systems relying on 802.15.4 devices, defense-in-depth is thus necessary. Device fingerprinting has long been an important defensive tool; reducing its cost raises its utility for defenders. We investigate new methods of fingerprinting 802.15.4 devices by exploring techniques to differentiate between multiple 802.15.4-conformant radio-hardware manufactures and firmware distributions, and point out the implications of these results for WIDS, both with respect to WIDS evasion techniques and countering such evasion

    Speaking the Local Dialect: Exploiting differences between IEEE 802.15.4 Receivers with Commodity Radios for fingerprinting, targeted attacks, and WIDS evasion

    Get PDF
    Producing IEEE 802.15.4 PHY-frames reliably accepted by some digital radio receivers, but rejected by others---depending on the receiver chip\u27s make and model---has strong implications for wireless security. Attackers could target specific receivers by crafting shaped charges, attack frames that appear valid to the intended target and are ignored by all other recipients. By transmitting in the unique, slightly non-compliant dialect of the intended receivers, attackers would be able to create entire communication streams invisible to others, including wireless intrusion detection and prevention systems (WIDS/WIPS). These scenarios are no longer theoretic. We present methods of producing such IEEE 802.15.4 frames with commodity digital radio chips widely used in building inexpensive 802.15.4-conformant devices. Typically, PHY-layer fingerprinting requires software-defined radios that cost orders of magnitude more than the chips they fingerprint; however, our methods do not require a software-defined radio and use the same inexpensive chips. Knowledge of such differences, and the ability to fingerprint them is crucial for defenders. We investigate new methods of fingerprinting IEEE 802.15.4 devices by exploring techniques to differentiate between multiple 802.15.4-conformant radio-hardware manufacturers and firmware distributions. Further, we point out the implications of these results for WIDS, both with respect to WIDS evasion techniques and countering such evasion

    Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017.

    Get PDF
    BACKGROUND: Global development goals increasingly rely on country-specific estimates for benchmarking a nation's progress. To meet this need, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 estimated global, regional, national, and, for selected locations, subnational cause-specific mortality beginning in the year 1980. Here we report an update to that study, making use of newly available data and improved methods. GBD 2017 provides a comprehensive assessment of cause-specific mortality for 282 causes in 195 countries and territories from 1980 to 2017. METHODS: The causes of death database is composed of vital registration (VR), verbal autopsy (VA), registry, survey, police, and surveillance data. GBD 2017 added ten VA studies, 127 country-years of VR data, 502 cancer-registry country-years, and an additional surveillance country-year. Expansions of the GBD cause of death hierarchy resulted in 18 additional causes estimated for GBD 2017. Newly available data led to subnational estimates for five additional countries-Ethiopia, Iran, New Zealand, Norway, and Russia. Deaths assigned International Classification of Diseases (ICD) codes for non-specific, implausible, or intermediate causes of death were reassigned to underlying causes by redistribution algorithms that were incorporated into uncertainty estimation. We used statistical modelling tools developed for GBD, including the Cause of Death Ensemble model (CODEm), to generate cause fractions and cause-specific death rates for each location, year, age, and sex. Instead of using UN estimates as in previous versions, GBD 2017 independently estimated population size and fertility rate for all locations. Years of life lost (YLLs) were then calculated as the sum of each death multiplied by the standard life expectancy at each age. All rates reported here are age-standardised

    Health Equity in Housing: Evidence and Evidence Gaps

    No full text

    Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017

    No full text
    corecore