
Dartmouth College Dartmouth College 

Dartmouth Digital Commons Dartmouth Digital Commons 

Computer Science Technical Reports Computer Science 

3-2014 

Fingerprinting IEEE 802.15.4 Devices with Commodity Radios Fingerprinting IEEE 802.15.4 Devices with Commodity Radios 

Ira Ray Jenkins 
Dartmouth College 

Rebecca Shapiro 
Dartmouth College 

Sergey Bratus 
Dartmouth College 

Ryan Speers 
River Loop Security, LLC 

Travis Goodspeed 
Straw Hat 

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr 

 Part of the Computer Sciences Commons 

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation 
Jenkins, Ira Ray; Shapiro, Rebecca; Bratus, Sergey; Speers, Ryan; and Goodspeed, Travis, "Fingerprinting 
IEEE 802.15.4 Devices with Commodity Radios" (2014). Computer Science Technical Report TR2014-746. 
https://digitalcommons.dartmouth.edu/cs_tr/347 

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital 
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized 
administrator of Dartmouth Digital Commons. For more information, please contact 
dartmouthdigitalcommons@groups.dartmouth.edu. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337601464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/347?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


Fingerprinting IEEE 802.15.4 Devices with Commodity
Radios

Dartmouth Computer Science Technical Report TR2014-746 Revision 2

Ira Ray Jenkins
jenkins@cs.dartmouth.edu

Dept. of Computer Science
Dartmouth College

Hanover, New Hampshire
USA

Rebecca Shapiro
bx@cs.dartmouth.edu
Dept. of Computer Science

Dartmouth College
Hanover, New Hampshire

USA

Sergey Bratus
sergey@cs.dartmouth.edu

Dept. of Computer Science
Dartmouth College

Hanover, New Hampshire
USA

Ryan Speers
ryan@riverloopsecurity.com

River Loop Security, LLC

Travis Goodspeed
travis@radiantmachines.com

Straw Hat

ABSTRACT
We present a reliable method of PHY-layer fingerprinting
of IEEE 802.15.4-conformant nodes with commodity digi-
tal radio chips widely used in building inexpensive IEEE
802.15.4-conformant devices. Typically, PHY-layer finger-
printing requires software-defined radios that cost orders of
magnitude more than the chips they can fingerprint; our
method does not require a software-defined radio and uses
the same inexpensive chips. For mission-critical systems
relying on 802.15.4 devices, defense-in-depth is thus nec-
essary. Device fingerprinting has long been an important
defensive tool; reducing its cost raises its utility for defend-
ers. We investigate new methods of fingerprinting 802.15.4
devices by exploring techniques to differentiate between mul-
tiple 802.15.4-conformant radio-hardware manufactures and
firmware distributions, and point out the implications of
these results for WIDS, both with respect to WIDS evasion
techniques and countering such evasion.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication

Keywords
IEEE 802.15.4; ZigBee; wireless sensor networks; security

1. INTRODUCTION
Wireless sensor networks (WSN) represent a massive and
rapidly growing technology sector. Some market research

estimates 1 billion radio frequency integrated circuit (RFIC)
devices will be deployed by 2017 [30], the majority of which
will be IEEE 802.15.4 [4] and ZigBee [40] standards compli-
ant. It is estimated that by 2015, nearly 65 million digital
utility meters, or “smart meters”, will be installed in homes
around the United States [31].

These devices will monitor and control many aspects of
our daily lives, from home automation to health care mon-
itoring to industrial management. For mission-critical sys-
tems, such as patient insulin pumps and power grid moni-
tors, quick-and-dirty, but accurate identification of network
devices in field environments is very useful—perhaps more
practically useful than the corresponding capabilities of tools
like Nmap [7], Xprobe [12], or P0f [8] in enterprise networks.

The purpose of this work is to expand the state-of-the-art
in physical-layer device identification, specifically for IEEE
802.15.4 and ZigBee devices. We have built a fingerprinting
framework, codenamed Isotope, around commodity hard-
ware and open-source software. We have also developed sev-
eral techniques that we hope to prove effective, with experi-
mental and statistical significance, in differentiating between
multiple device hardwares and firmwares.

The remainder of this paper is organized as follows: Section
2 discusses previous work and provides context for our con-
tributions; Section 3 provides a brief primer on the IEEE
802.15.4 standard and introduces the fingerprinting tech-
niques we have developed; Section 4 describes our experi-
mental setup; Section 5 reveals our preliminary results; and,
finally, Section 6 offers concluding remarks and a nod toward
future work.

2. PREVIOUS WORK
In this section, we briefly describe the types of digital radio
fingerprinting and their application to offensive and defen-
sive exploits. For a more detailed view, Danev, Zanetti, and
Capkun provide a thorough survey of the state-of-the-art

1



in wireless fingerprinting [21]. This work extends previous
work done within our lab [22].

Physical-layer device identification, or fingerprinting, endeav-
ors to exploit unique (often subtle) characteristics in the
digital circuitry or firmware implementation of a device.
Slight imperfections in the radio circuitry, introduced during
the manufacturing process, might be detectable during ra-
dio transmissions. In addition, bugs or deviations from the
standard in the firmware implementation may also be ob-
servable during radio operation. These imperfections, bugs,
or deviations are known as fingerprints or device signatures.

There are both passive [23, 24, 32] and active [18, 13] meth-
ods of fingerprinting wireless radio devices. In passive meth-
ods, a third party attempts to unobtrusively sniff the com-
munications channel. Unique signals or transmission timing
may be considered a fingerprint. Naturally, this approach is
often lossy or error prone due to the potential lack of traffic
over the wire or interference from the multiple layers of the
radio stack [35]. Alternatively, active techniques attempt to
interact with a device, often by sending specially crafted re-
quests in hopes to elicit a response. Both the data contained
in the response and the response itself can be considered a
fingerprint.

Fingerprint Applications. Fingerprinting digital systems
has a long history of offensive and defensive applications. Se-
curity tool collections such as BackTrack Linux [1] include a
growing number of fingerprinting tools, and security educa-
tion organizations such as SANS [9] treat it as an essential
topic.

For attackers, fingerprinting targets has long been a way of
focusing effort on finding systems known to be vulnerable.
It is essential in the presence of defensive misdirection mea-
sures such as false bannering or redirecting honeypots [11],
as it helps to see through the defenders’ deception. Not
surprisingly, as soon as fingerprinting techniques became a
part of standard TCP/IP network reconnaissance (in toolk-
its such as Nmap and Xprobe) an arms race ensued with
tools such as Honeyd [3] and IP Personality [5] offering func-
tionality to deceive fingerprinting techniques by imitating
known signatures.

Impersonating trusted wireless nodes has long been a pre-
mier tool in attackers’ arsenals. A tool that can identify
software, firmware, or hardware and its version by highlight-
ing differences between implementations, is especially use-
ful when identifying wireless nodes, both benign and malig-
nant, and finding vulnerable software, firmware, and hard-
ware combinations. The IEEE 802.15.4 and ZigBee stan-
dards offer no exception to this rule. By design, these are
commodity technologies (in particular, much more so at its
origins than 802.11/Wi–Fi). Impersonating a wireless node
does not pose a considerable challenge to attackers, bar-
ring strong cryptographic identification of nodes. Fully func-
tional IEEE 802.15.4 and ZigBee-compatible digital radios
can be acquired cheaply, and are even found in children’s
toys—such as the Girltech IM ME [27, 29], which contains
a full-featured CC1110 [37] digital radio chip often found in
much more expensive equipment. Furthermore, such devices
are not difficult to re-program and re-purpose for various ap-

plications, from spectrum analyzers to a jammer for police
and public safety digital radio protocols [19].

IDPS Design Implications. Our work has significant im-
plications for the design of future intrusion detection and
prevention systems (IDPS). At the very least, it would in-
form digital radio monitoring and IDPS with some clues of
what to look for below the level of the logical bytes of cap-
tured frames, i.e., what attacks may be facilitated—and so
also detected and disrupted—by crafting not just the frame
payloads but also their physical layer (PHY) and physical
layer convergence protocol (PLCP) representations. Simi-
larly, critical to defense is the knowledge of and ability to
recognize wireless IDPS (WIDPS) evasion, and thus under-
standing any stable ways that a WIDPS may not see a frame
(beyond just being out of range) but the target would is key.
These types of attacks are introduced in the seminal work by
Ptacek and Newsham [35]. They introduced injection and
evasion attacks in which the data seen over the wire differs
between the receiver and the IDPS. If a packet is ignored
by a receiving radio, then carefully crafted packets can be
injected into the IDPS. On the other hand, packets that
the IDPS may ignore, but that are accepted by a receiving
radio represent the potential for an entire back-channel of
communications that a monitor would never see.

Ubiquitous deployments of IEEE 802.15.4 devices pose con-
siderable authentication challenges [36], and it is not clear
if classic PKI-based two-way authentication schemes will be
a practical solution. Given the lack of strong cryptographic
authentication during a device’s commissioning phase, to
be able to fingerprint an IEEE 802.15.4 radio on a device
as belonging to a particular vendor’s fleet may provide a
piece of crucial evidence for trusting the device. Even when
cryptographic authentication is in use, the implementation
details of key storage and management may be problematic,
and may lead to the keys being extracted and used by ad-
versaries. In such situations, the capability to fingerprint
physical devices may provide an additional layer of assur-
ance when authentication material comes under suspicion.

It is worth noting, to the authors’ knowledge, the methods
we describe in this paper and their application to the IEEE
802.15.4 standard represent the state-of-the-art in wireless
fingerprinting without using software-defined radios.

3. METHODS
In this section we look at the IEEE 802.15.4 standard and
describe the fingerprinting techniques we have developed.

3.1 IEEE 802.15.4 Standard
The Institute of Electrical and Electronics Engineers (IEEE) [4]
created the 802.15 workgroup for Wireless Personal Area
Networks (WPAN) in early 2000s to establish standards for
Layers 1 and 2 (physical and link, respectively). The IEEE
802.15 workgroup defined standards that include 802.15.1,
a derivative of Bluetooth intended for general WPANs, and
802.15.4, designed for low-rate WPANs (LR-WPANs). Low-
rate WPANs are attractive for low-power, low-range, low-
bandwidth, and low-cost applications of wireless networking,
particularly for industrial control and embedded systems.

ZigBee is a Layer 3 (network layer) specification often used

2



on top of the 802.15.4 layers and is more well-known than
802.15.4. While ZigBee is ripe for investigation in many
different forms of fingerprinting, this paper focuses on the
physical layer beneath ZigBee—the 802.15.4 standard.

Figure 1: IEEE 802.15.4 standard physical frame. For all
physical frames, the SHR should be 8 symbols of zero (0x0)
followed by 0xA7. The frame length, in octets, varies with
the size of the physical payload. Physical frame types dif-
fer in their payload requirements. The final element of the
payload, not shown, may be the FCS.

In the IEEE 802.15.4, the smallest amount of information
that can be sent over the air is four bits, also known as a
symbol. The standard defines four types of physical frames:
beacon, data, acknowledgement, and command. The stan-
dard physical frame layout, for all four types of frames, is
shown in Figure 1. A standard frame consists of a syn-
chronization header (SHR), a physical layer (PHY) header
(PHR), and a payload within the physical service data unit
(PSDU). The physical frames differ in their payload, but
all contain a standard SHR and PHR. The SHR comprises
an 8-symbol wide preamble of zeros (0x0) and the start of
frame delimiter (SFD), which must be 0xA71. This header,
as its name implies, serves to synchronize the receiving ra-
dio with the transmitting radio so that symbols are correctly
pulled out of the signal. The frame length, a 7-bit number
representing the number of octets in the physical payload,
and a single reserved bit compose the PHR. The payload,
or packet, follows the length, containing all the data for
Layer 2 and higher. Each type of physical frame requires
a different payload structure. Finally, not shown here, the
optional 4-symbol wide frame control sequence (FCS) is a
checksum used to check for data corruption in the payload
during transit.

3.2 Fingerprinting Techniques
Here we will describe four new techniques for fingerprinting
IEEE 802.15.4 stacks, with a focus on the physical layer.
Each technique is active —a stimulus frame with a non-
standard physical-layer header is transmitted and the tar-
get’s response or lack thereof is recorded. Our hypothesis
is that we can distinguish different radio chipsets by which
type of stimulus packets they are able to receive. To deter-
mine whether a given chipset has indeed received a packet,
we send a frame whose payload triggers a response by a
higher layer —such as beacon request. If we receive the cor-
rect response to our stimulus, we assume that our crafted
frame was received.

Crafting Physical Frame Headers. Before introducing
the designed methods, it should be noted that many com-
modity radios cannot craft arbitrary physical frame headers,
SHR and PHR. By design, the radio hardware manages the
frame headers to assure proper functionality. In order to
fully control a physical frame’s contents, we make use of our

1Some radios deviate from the standard and allow the SFD
to be set via an internal register.

good neighbor Travis Goodspeed’s packets-in-packets (PIP)
frame-injection technique [28].

The PIP technique for IEEE 802.15.4 digital radios is rela-
tively simple. The 802.15.4 standard requires the SFD to be
0xA7. If an 802.15.4-compliant radio receives an SFD of any
other value, the receiving radio resets itself into a fresh re-
ceiving state, listening again for a new SHR. As noted above,
some radios permit us to specify the SFD value via a regis-
ter, which allows us to transmit frames with non-compliant
SFDs. Any receivers expecting the standard SFD will reset
themselves after seeing the unexpected symbols. The trans-
mitting radio, however, will continue to send the remainder
of the frame. If the remainder of the frame contains a stan-
dard SHR the receiver will think it is receiving a fresh packet.
In this way, we are able to transmit a non-standard phys-
ical frame that contains a fully-standard physical frame, a
packet in a packet.

Variable Preamble Length
The variable preamble length fingerprinting technique fo-
cuses on the preamble used to put the receiving radio into
a state where it is ready to accept an SFD followed by the
remainder of the frame. While the IEEE 802.15.4 standard
defines the preamble length to be eight symbols containing
the value 0x0, some radios might accept frames with fewer
than the stated number while some do not. Figure 2 shows
the general layout of a frame generated to test a target’s
response to non-standard preambles. The aim of this tech-
nique is to measure the number of zero symbols before the
SFD a chipset requires in order to accept a frame. Note that
the only portion of the frame that is altered from the IEEE
802.15.4 standard is the preamble length.

Figure 2: Physical frame with variable preamble length. The
number of zero (0x0) symbols that compose the preamble is
varied between 0 and 8. Any response to a non-standard
preamble might signify a fingerprint.

Franconian Notch
According to the IEEE 802.15.4 specification, a preamble
field should contain 32 binary zeros—8 zero (0x0) symbols.
However, some chipsets may accept non-standard pream-
bles. For example, the CC2420 can be programmed to ignore
some of the least significant symbols in the synchronization
header to help it be more resilient to noise [38]. Figure 3
shows the physical frame crafted for the Franconian Notch2

method. Here we modulate each subsequent symbol of the
standard preamble from 0x0 to 0xF3, going from all zeros
(0x0s) to all 0xFs. The aim of this technique is to measure
the number of invalid preamble symbols a radio is willing to
accept. Note, again, that the only portion of the frame that
is modified from the IEEE 802.15.4 standard is the preamble
symbols. If a radio and its firmware are fully standards com-
pliant, any variation should result in an abandoned packet
and no response.

2The Franconian Notch is a mountain pass through the
White Mountains of New Hampshire.
3It should be noted that we do not attempt to modulate the
possible combinations of 0x0s and 0x1s.

3



Figure 3: Physical frame with Franconian Notch. The num-
ber of zero (0x0) symbols that compose the preamble is var-
ied between 0 and 8, with the lengths remainder transformed
into 0xF symbols. Any response to a non-standard preamble
might signify a fingerprint.

Franconian Bridge
Inspired by the previous approaches, the Franconian Bridge
method“spans the gap”between the variable preamble length
and Franconian Notch techniques. As shown in Figure 4,
the Franconian Bridge checks to see how a target responds
to having a varying number of 0xF symbols placed between
the fully-standard preamble and the SFD. Technically, this
will evaluate a radios behavior in the presence of a seem-
ingly non-standard SFD. As before, the only portion of the
frame that is modified from the IEEE 802.15.4 standard is
that following the preamble and preceding a SFD. If a radio
and its firmware are fully standards compliant, any variation
should result in an abandoned packet and no response.

Figure 4: Physical frame with Franconian Bridge. A
varying number of 0xF symbols are inserted between a
fully-standard preamble and SFD. Any response to a non-
standard SFD might signify a fingerprint.

Cumberland Gap
The Cumberland Gap4 technique, as seen in Figure 5, mea-
sures how a target behaves with respect to receiving frames
immediately after receiving a valid preamble and an invalid
SFD, followed by a standard frame.

Figure 5: Physical frame with Cumberland Gap. An invalid
SFD is injected, followed by a varying amount of garbage
symbols. Any unique response might signify a fingerprint.

It is important to remember that when radios are listen-
ing for data, they read whatever they find into a symbol.
Therefore, it is quite common for a radio to be prepared to
accept a frame when it is merely listening to interference
and reading them into symbols. There are a few discrete
states that a radio state machine has to go through when
finding an SFD. In this method, we intentionally make the
SFD very close to the standard to nudge the receiver as close
as possible to the state where it receives a full frame without
outright telling it to take the remainder of the frame. When
the incorrect SFD arrives, the chip goes back to listening for
a preamble—we seek to measure the timing of this behavior.
The fewer symbols that we can inject and still get a response
may imply a faster turn-over time, and might also signify a
fingerprint.

4. EXPERIMENTAL SETUP
4The Cumberland Gap is a mountain pass through the
Appalachian Mountains between Tennessee, Kentucky, and
Virginia.

To test the functionality of our proposed fingerprinting meth-
ods, we built a testbed to examine how different IEEE 802.15.4
stacks respond to the types of non-standard physical headers
previously described.

4.1 Testbed Layout
Our testbed consists of only commodity hardware and open-
source software. As shown in Figure 6, two 802.15.4 radios
are connected (via serial over USB) to a single workstation
running Isotope, our fingerprinting software. Isotope is a
Python framework that utilizes the open source libraries
Scapy [10], to build IEEE 802.15.4 physical frames, and
KillerBee [6], to configure the radios, monitorq communi-
cations traffic, and inject arbitrary frames. One radio is
used solely to transmit crafted frames and the other radio
is used to sniff all traffic on a particular channel. The third,
unknown, device is setup to listen to a specific channel and
respond to beacon requests.

Figure 6: Fingerprinting testbed. Our Python framework,
Isotope, manages separate transmitting and receiving ra-
dios and monitors communications. All radios operate on
the same channel, with the transmitter sending out non-
standard beacon requests. The unknown device is config-
ured to listen for valid requests and respond. The receiving
radio listens for beacon responses.

Although this setup may appear contrived—802.15.4 devices
may be configured to hop between various channels, as they
send and receive frames, for additional robustness or to frus-
trate reverse engineering—we believe that our setup is a
good starting point and that it can be extended to work
with a variety of target configurations.

4.2 Hardware and Software
We tested multiple devices5 including Zigduinos [33], RZUS-
Bsticks [17], and the popular (but now discontinued)Tmote
Sky [34]. Each of these devices contain different on-board
radio chips, namely an Atmel ATmega128RFA1 [16], an
Atmel AT86RF230 [15], and a Chipcon CC2420 [38], re-
spectively. Finally, each device has several associated open-
source firmware distributions including Arduino [14], Chibi [25,
26], Contiki OS [20], GoodFET [2], and Tiny OS [39]. Ta-
ble 1 summarizes the different possible combinations.

5. RESULTS
To-date, only the GoodFET firmware combinations have
yielded results. The following charts represent the individual

5We did not test the Freakduino, and only recently received
the Api-Mote to replace the Tmote Sky.

4



Device Radio Firmware

zigduino atmega128rfa1

Arduino
Contiki

GoodFET
TinyOS

freakduino

at86rf230

Arduino
Chibi

GoodFET

rzusbstick
Chibi

Contiki
Raven

apimote

cc2420

GoodFET

tmote sky
Contiki

GoodFET
TinyOS

Table 1: Hardware and Firmware Combinations

0 200 400 600 800 1,000

0

1

2

3

4

5

6

7

Number of beacons received

N
u
m

b
er

o
f

in
se

rt
ed

sy
m

b
o
ls

tmote zigduino rzusbstick

Figure 7: Variable preamble with GoodFET firmware.

beacon responses received, out of 1000 non-standard beacon
requests, for each radio device with GoodFET firmware.

Variable Preamble Length
Figure 7 shows the results of varying the number of preamble
symbols from 0 to 7 —8 zero (0x0) symbols is the standard.
Clearly, the Tmote device responds to the fewest number
of preamble symbols. It is possible that this is by design.
Remember, the Tmote contains a CC2420 radio chip which
allows a programmable number of preamble bits to be ac-
cepted. Assuming normal function, it seems obvious that
the Tmote is distinguishable from the Zigduino and RZUSB-
stick. Somewhat unsettling is that the RZUSBstick responds
to less than 200 beacon requests with 6 or 7 symbols. It is
possible that this device is more strictly-standards compli-
ant; a test run with 8 symbols might verify this assumption.

Franconian Notch
Figure 8 showcases the results of transforming the preamble
from 8 zero (0x0) symbols to 6 0xF symbols. Zero (0) on
the Y-axis represents a fully standard physical frame, with

0 200 400 600 800 1,000

0

1

2

3

4

5

6

Number of beacons received

N
u
m

b
er

o
f

in
se

rt
ed

sy
m

b
o
ls

tmote zigduino rzusbstick

Figure 8: Franconian Notch with GoodFET firmware.

zero 0xF symbols present. It appears as though the Tmote,
previously loose with the standard, is now fully compliant.
Since the Tmote previously accepted fewer preamble sym-
bols, this could be an artifact of the radio interpreting the
additional 0xF symbols as an invalid SFD, or it could have
to do with the RF demodulator’s sync circuit being thrown
out of state by the additional bit transitions. Again, the
RZUSBstick responds to far fewer beacon requests. This
may be explained by the position of the mote during testing
or the fact that both the Tmote and Zigduinos use external
antennas. In either case, the RZUSBstick stands out by ac-
cepting as many as 4 0xF symbols within the preamble. For
both the Tmote and RZUSBstick, this looks like a possible
identifier.

Franconian Bridge
The results for the Franconian Bridge method are shown
in Figure 9. Recall that this technique inserts garbage be-
tween a valid preamble and a valid SFD. Ideally, a radio
would interpret the garbage as an invalid SFD. As in the
previous method’s results, the Tmote strictly adheres to the
standard; while, the RZUSBstick drastically increases its
responses from the previous two tests. The RZUSBstick
accepts, with high likelihood, up to 5 garbage symbols in-
terposed between the preamble and SFD.

Cumberland Gap
The results for the Cumberland Gap method, seen in Fig-
ure 10, do not seem encouraging. None of the motes respond
to more than about 600 beacon requests. There may have
been some interference or channel noise during this test run.
It should be run again. It appears as though the Tmote has
the fastest turnaround time, while the RZUSBstick main-
tains the slowest.

6. CONCLUSIONS
With the number of wireless sensor networks exploding, a
large portion being IEEE 802.15.4 and ZigBee devices, it is
essential that we be able to secure and protect these devices

5



0 200 400 600 800 1,000

0

1

2

3

4

5

6

Number of beacons received

N
u
m

b
er

o
f

in
se

rt
ed

sy
m

b
o
ls

tmote zigduino rzusbstick

Figure 9: Franconian Bridge with GoodFET firmware.

0 200 400 600 800 1,000

0

1

2

3

4

5

6

7

8

9

Number of beacons received

N
u
m

b
er

o
f

in
se

rt
ed

sy
m

b
o
ls

tmote zigduino rzusbstick

Figure 10: Cumberland Gap with GoodFET firmware.

and networks for mission-critical systems. Fingerprinting
these radio devices is a first step along the path to achieving
that security. Device identification, both passive and active,
has been used on many other wireless network protocols.
Our work seeks to apply it to IEEE 802.15.4-compliant ra-
dio devices. By accurately identifying different devices, we
have another tool on-top of PKI authentication schemes for
verifying trusted nodes in a network. Similarly, by analyz-
ing how frames and packets make their way through the
firmware and radio circuitry, it is possible that we may un-
cover hidden vulnerabilities and attack vectors.

With only preliminary results, it appears that the Tmote
devices, with the Chipcon CC2420 radio chipset, and the
RZUSBsticks, with the Atmel AT86RF230 radio chipset, are
identifiable. A summary of our results to-date is shown in
Table 2. The Tmotes clearly respond to very non-standard
preamble lengths, whether by design or flaw; however, the
same devices seem to be very strict on preamble and SFD
content. Meanwhile, the RZUSBsticks present a conun-
drum. In three of the tests, the devices respond with an
alarmingly low rate. It is possible the devices are very slow,
are receiving too much noise, or simply do not receive all the
beacon requests without external radios. From the results
that we do have, it looks like the RZUSBsticks accept very
non-standard preamble and SFD content. The CC2420 chips
look like the top contender so far to avoid WIDS detection.
Further work would need to confirm this.

Firmware Preamble Franconia Notch Franconia Bridge Cumberland Gap

ATmega128RFA1

Contiki — — — —
Goodfet H H H H
TinyOS — — — —
Zigduino H H H H

AT86RF230
Chibi — — — —
Contiki — — — —
Raven I I I I

CC2420
Contiki — — — —
Goodfet H L L L
TinyOS H L L L

Table 2: Summary of results to date. The following table
is labelled based on our current confidence in identifiability.
An ‘H’ means that for a specific radio/firmware combina-
tion, the given fingerprinting technique is likely to be dis-
tinguishable from other radio/firmware combinations. An
‘L’ means that, at this time, little evidence suggests a spe-
cific radio/firmware combination is easily identifiable. An
‘I’ means inconclusive at this time. An ‘—’ means that we
have yet to test this radio/firmware combination.

6.1 Future Work
We feel this work is ripe for research. As shown above,
there are many more possible firmware and hardware com-
binations to test. We have really only just begun. Moving
forward, it will be necessary to evaluate the effect of noise
and interference on the testbed. Of course, our software
framework, Isotope, will also require some additional refine-
ments to make it more robust. Typically, in device identi-
fication, a database of fingerprints is used in combination
with some sort of machine learning method to analyze and
evaluate fingerprint matches. Our current work constitutes
only the first stage of identifying possible fingerprints. We
should also consider additional techniques for fingerprinting,
such as length overflow. Lastly, we would like to explore the
potential for WIDS evasion by these commodity radios.

7. ACKNOWLEDGEMENTS

6



This research was supported in part by the National Science
Foundation, under Grant Award Number 1016782, and the
Department of Energy, under Grant Award Number DE-
OE0000097. This report was prepared as an account of
work sponsored by an agency of the United States Gov-
ernment. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any war-
ranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial prod-
uct, process, or service by trade name, trademark, man-
ufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.

8. REFERENCES
[1] BackTrack Linux. http://www.backtrack-linux.org.

[2] GoodFET. http://goodfet.sourceforge.net.

[3] Honeyd. http://www.honeyd.org.

[4] IEEE Computer Society. http://www.ieee.org.

[5] IP Personality.
http://ippersonality.sourceforge.net.

[6] KillerBee. http://code.google.com/p/killerbee/.

[7] Nmap Security Scanner. http://nmap.org.

[8] p0f. http://lcamtuf.coredump.cx/p0f3/.

[9] SANS. http://www.sans.org.

[10] Scapy. http://www.secdev.org/projects/scapy/.

[11] Tiny Honeypot. http://freecode.com/projects/thp.

[12] Xprobe. http://xprobe.sourceforge.net.

[13] C. Arackaparambil, S. Bratus, A. Shubina, and
D. Kotz. On the reliability of wireless fingerprinting
using clock skews. In Proceedings of the 3rd ACM
conference on Wireless network security, pages
169–174. ACM, 2010.

[14] Arduino SA. Arduino development platform.
http://www.arduino.cc.

[15] Atmel Corporation. AT86RF230 datasheet.
http://www.atmel.com/Images/doc5131.pdf.

[16] Atmel Corporation. ATmega128RFA1 datasheet.
http://www.atmel.com/Images/doc8266.pdf.

[17] Atmel Corporation. RZUSBstick.
http://www.atmel.com/tools/RZUSBSTICK.aspx.

[18] S. Bratus, C. Cornelius, D. Kotz, and D. Peebles.
Active behavioral fingerprinting of wireless devices. In
Proceedings of the first ACM conference on Wireless
network security, pages 56–61. ACM, 2008.

[19] S. Clark, T. Goodspeed, P. Metzger, Z. Wasserman,
K. Xu, and M. Blaze. Why (special agent) johnny
(still) can’t encrypt: a security analysis of the apco
project 25 two-way radio system. In Proceedings of the
20th USENIX conference on Security, SEC’11.
USENIX Association, 2011.

[20] Contiki Project. Contiki OS.
http://www.contiki-os.org.

[21] B. Danev, D. Zanetti, and S. Capkun. On
physical-layer identification of wireless devices. ACM

Computing Surveys (CSUR), 45(1):6, 2012.

[22] D. D. Dowd. Isotope: Active Behavioral
Fingerprinting of IEEE 802.15.4 Devices. Senior
honors thesis, Dartmouth College, August 2012.

[23] J. P. Ellch. Fingerprinting 802.11 devices. Master’s
thesis, Naval Postgraduate School, 2006.

[24] J. Franklin, D. McCoy, P. Tabriz, V. Neagoe, J. V.
Randwyk, and D. Sicker. Passive data link layer
802.11 wireless device driver fingerprinting. In
Proceedings of the 15th USENIX Security Symposium,
pages 167–178, 2006.

[25] Freaklabs. Chibi Arduino port. http://www.
freaklabs.org/index.php/chibiArduino.html.

[26] Freaklabs. Chibi wireless stack.
http://www.freaklabs.org/index.php/

Chibi-A-Simple-Open-Source-Wireless-Stack.

html.

[27] T. Goodspeed. IM ME GoodFET wiring tutorial.
http://travisgoodspeed.blogspot.com/2010/03/

im-me-goodfet-wiring-tutorial.html, March 2010.

[28] T. Goodspeed, S. Bratus, R. Melgares, R. Shapiro,
and R. Speers. Packets in packets: Orson welles’
in-band signaling attacks for modern radios. In
WOOT, pages 54–61, 2011.

[29] T. Goodspeed and M. Ossmann. Real men carry pink
pagers. In 12th ToorCon Conference, San Diego, 2010.

[30] M. Hatler, D. Gurganious, and C. Chi. 802.15.4 &
ZigBee: Expanding markets, growing threats.
Technical report, A Market Dynamics report (9th
edition), 2012.

[31] Institute for Electric Efficiency. Utility-scale smart
meter deployments, plans, & proposals. Technical
report, The Edison Foundation, May 2012.

[32] S. Jana and S. K. Kasera. On fast and accurate
detection of unauthorized wireless access points using
clock skews. Mobile Computing, IEEE Transactions
on, 9(3):449–462, 2010.

[33] Logos Electromechanical LLC. Zigduino.
http://logos-electro.com/zigduino/.

[34] Moteiv Corporation. Tmote Sky datasheet.
http://www.snm.ethz.ch/snmwiki/pub/uploads/

Projects/tmote_sky_datasheet.pdf.

[35] T. H. Ptacek and T. N. Newsham. Insertion, evasion,
and denial of service: Eluding network intrusion
detection. Technical report, Secure Networks Inc,
1998.

[36] S. W. Smith. Cryptographic scalability challenges in
the smart grid. In Innovative Smart Grid Technologies
(ISGT), 2012 IEEE PES, pages 1–3, 2012.

[37] Texas Instruments. CC1110 datasheet.
http://www.ti.com/lit/ds/symlink/cc1110f32.pdf.

[38] Texas Instruments. CC2420 datasheet.
http://www.ti.com/lit/ds/symlink/cc2420.pdf.

[39] TinyOS Alliance. Tinyos. http://www.tinyos.net.

[40] Zigbee Alliance. ZigBee. http://www.zigbee.org.

7


	Fingerprinting IEEE 802.15.4 Devices with Commodity Radios
	Dartmouth Digital Commons Citation

	tmp.1601659800.pdf.Ws4wz

