12 research outputs found
Solvent: A Framework for Protein Folding
Consistency and reliability are crucial for conducting AI research. Many
famous research fields, such as object detection, have been compared and
validated with solid benchmark frameworks. After AlphaFold2, the protein
folding task has entered a new phase, and many methods are proposed based on
the component of AlphaFold2. The importance of a unified research framework in
protein folding contains implementations and benchmarks to consistently and
fairly compare various approaches. To achieve this, we present Solvent, an
protein folding framework that supports significant components of
state-of-the-art models in the manner of off-the-shelf interface Solvent
contains different models implemented in a unified codebase and supports
training and evaluation for defined models on the same dataset. We benchmark
well-known algorithms and their components and provide experiments that give
helpful insights into the protein structure modeling field. We hope that
Solvent will increase the reliability and consistency of proposed models and
gives efficiency in both speed and costs, resulting in acceleration on protein
folding modeling research. The code is available at
https://github.com/kakaobrain/solvent, and the project will continue to be
developed.Comment: preprint, 8page
Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial
Background:
Glucagon-like peptide 1 receptor agonists differ in chemical structure, duration of action, and in their effects on clinical outcomes. The cardiovascular effects of once-weekly albiglutide in type 2 diabetes are unknown. We aimed to determine the safety and efficacy of albiglutide in preventing cardiovascular death, myocardial infarction, or stroke.
Methods:
We did a double-blind, randomised, placebo-controlled trial in 610 sites across 28 countries. We randomly assigned patients aged 40 years and older with type 2 diabetes and cardiovascular disease (at a 1:1 ratio) to groups that either received a subcutaneous injection of albiglutide (30–50 mg, based on glycaemic response and tolerability) or of a matched volume of placebo once a week, in addition to their standard care. Investigators used an interactive voice or web response system to obtain treatment assignment, and patients and all study investigators were masked to their treatment allocation. We hypothesised that albiglutide would be non-inferior to placebo for the primary outcome of the first occurrence of cardiovascular death, myocardial infarction, or stroke, which was assessed in the intention-to-treat population. If non-inferiority was confirmed by an upper limit of the 95% CI for a hazard ratio of less than 1·30, closed testing for superiority was prespecified. This study is registered with ClinicalTrials.gov, number NCT02465515.
Findings:
Patients were screened between July 1, 2015, and Nov 24, 2016. 10 793 patients were screened and 9463 participants were enrolled and randomly assigned to groups: 4731 patients were assigned to receive albiglutide and 4732 patients to receive placebo. On Nov 8, 2017, it was determined that 611 primary endpoints and a median follow-up of at least 1·5 years had accrued, and participants returned for a final visit and discontinuation from study treatment; the last patient visit was on March 12, 2018. These 9463 patients, the intention-to-treat population, were evaluated for a median duration of 1·6 years and were assessed for the primary outcome. The primary composite outcome occurred in 338 (7%) of 4731 patients at an incidence rate of 4·6 events per 100 person-years in the albiglutide group and in 428 (9%) of 4732 patients at an incidence rate of 5·9 events per 100 person-years in the placebo group (hazard ratio 0·78, 95% CI 0·68–0·90), which indicated that albiglutide was superior to placebo (p<0·0001 for non-inferiority; p=0·0006 for superiority). The incidence of acute pancreatitis (ten patients in the albiglutide group and seven patients in the placebo group), pancreatic cancer (six patients in the albiglutide group and five patients in the placebo group), medullary thyroid carcinoma (zero patients in both groups), and other serious adverse events did not differ between the two groups. There were three (<1%) deaths in the placebo group that were assessed by investigators, who were masked to study drug assignment, to be treatment-related and two (<1%) deaths in the albiglutide group.
Interpretation:
In patients with type 2 diabetes and cardiovascular disease, albiglutide was superior to placebo with respect to major adverse cardiovascular events. Evidence-based glucagon-like peptide 1 receptor agonists should therefore be considered as part of a comprehensive strategy to reduce the risk of cardiovascular events in patients with type 2 diabetes.
Funding:
GlaxoSmithKline
Enhanced Electrocatalytic Properties of Transition-Metal Dichalcogenides Sheets by Spontaneous Gold Nanoparticle Decoration
Here, we report that transition-metal
dichalcogenides such as MoS<sub>2</sub> and WS<sub>2</sub> can be
decorated with gold nanoparticles
by a spontaneous redox reaction with hexachloroauric acid in water.
The resulting gold nanoparticles tend to grow at defective sites,
and therefore, selective decorations at the edges and the line defects
in the basal planes of bulk single crystals were observed. The lithium
intercalation–exfoliation process makes the basal planes of
chemically exfoliated MoS<sub>2</sub> and WS<sub>2</sub> sheets much
more defective than their single-crystalline counterparts, leading
to a more uniform and higher-density deposition of gold nanoparticles.
Due to the greatly improved charge transport between adjacent sheets,
the resulting MoS<sub>2</sub>/Au and WS<sub>2</sub>/Au hybrids show
significantly enhanced electrocatalytic performance toward hydrogen
evolution reactions
Ligand Conjugation of Chemically Exfoliated MoS<sub>2</sub>
MoS<sub>2</sub> is a two-dimensional material that is gaining prominence
due to its unique electronic and chemical properties. Here, we demonstrate
ligand conjugation of chemically exfoliated MoS<sub>2</sub> using
thiol chemistry. With this method, we modulate the ζ-potential
and colloidal stability of MoS<sub>2</sub> sheets through ligand designs,
thus enabling its usage as a selective artificial protein receptor
for β-galactosidase. The facile thiol functionalization route
opens the door for surface modifications of solution processable MoS<sub>2</sub> sheets
Development of polyoxometalate-anchored 3D hybrid hydrogel for high-performance flexible pseudo-solid-state supercapacitor
A highly interconnected three-dimensional (3D) networked conductive polypyrrole (PPy) hydrogel anchored with uniformly distributed phosphomolybdic acid (PMo12/PPy hybrid hydrogel) was fabricated by one spot in-situ crosslinking-polymerization strategy. The interconnected 3D hydrogel frameworks not only realize homogenous distributing of PMo12 active particles against aggregation, but also provide continuous transport highways for electron and ion. The specific capacitance of the PMo12/PPy hybrid hydrogel was evaluated in three-electrode system to be 776 F/g, which are almost 2.5 fold higher than that of conventional PMo12/PPy composites. Density functional theory (DFT) calculates the hydrogen bonding strength between cross-linker (TCPP) and PPy to be comparable with the force between closely packed PPy chains. Consequently, the TCPP crosslink with PPy to form a stable 3D porous structure, which provides more adsorb sites for PMo12, bring better stability than conventional PMo12/PPy composites. Meanwhile, the assembled liquid-state device achieves its specific capacitance of 300 F/g and obtains a high rate capability and good cycling stability. The assembled solid-state supercapacitor delivers a maximum specific capacitance of 162.1 F/g, high energy density of 50.66 Wh/kg at power density of 750 W/kg, displays excellent electrochemical performances exceeding those of other polyoxometalate (POM) or metal oxide-based systems to the best of our knowledge. Furthermore, the fabricated supercapacitor was disclosed to render very high capacitance when bended. The fabrication of such a flexible pseudo-solid-state energy storage device is an important breakthrough towards achieving superior performance not possible with conventional polymer/POM composite.We gratefully acknowledge the financial support from National Natural Science Foundation of China (51902222, 51603142, U1610255), Natural Science Foundation of Shanxi Province (201701D221072), the China Scholarship Council (No. 201806935057), the Shanxi Provincial Key Innovative Research Team in Science and Technology (2015013002-10 and 201605D131045-10)