2,246 research outputs found
Most real analytic Cauchy-Riemann manifolds are nonalgebraizable
We give a very simple argument to the effect that most germs of generic real
analytic Cauchy-Riemann manifolds of positive CR dimension are not
holomorphically embeddable into any generic real algebraic CR manifold of the
same real codimension in a finite dimensional space. In particular, most such
germs are not holomorphically equivalent to a germ of a generic real algebraic
CR manifold.Comment: To appear in Manuscripta Mat
Recommended from our members
Argo real-time quality control intercomparison
The real-time quality control (RTQC) methods applied to Argo profiling float data by the United Kingdom (UK) Met Office, the United States (US) Fleet Numerical Meteorology and Oceanography Centre, the Australian Bureau of Meteorology and the Coriolis Centre are compared and contrasted. Data are taken from the period 2007 to 2011 inclusive and RTQC performance is assessed with respect to Argo delayed-mode quality control (DMQC). An intercomparison of RTQC techniques is performed using a common data set of profiles from 2010 and 2011. The RTQC systems are found to have similar power in identifying faulty Argo profiles but to vary widely in the number of good profiles incorrectly rejected. The efficacy of individual QC tests are inferred from the results of the intercomparison. Techniques to increase QC
performance are discussed
Electronic structure and spectroscopy of the quaternary Heusler alloy CoCrFeAl
Quaternary Heusler alloys CoCrFeAl with varying Cr to Fe
ratio were investigated experimentally and theoretically. The electronic
structure and spectroscopic properties were calculated using the full
relativistic Korringa-Kohn-Rostocker method with coherent potential
approximation to account for the random distribution of Cr and Fe atoms as well
as random disorder. Magnetic effects are included by the use of spin dependent
potentials in the local spin density approximation.
Magnetic circular dichroism in X-ray absorption was measured at the
edges of Co, Fe, and Cr of the pure compounds and the alloy in order to
determine element specific magnetic moments. Calculations and measurements show
an increase of the magnetic moments with increasing iron content. Resonant
(560eV - 800eV) soft X-ray as well as high resolution - high energy (keV) hard X-ray photo emission was used to probe the density of the
occupied states in CoCrFeAl.Comment: J.Phys.D_Appl.Phys. accepte
Design of magnetic materials: CoCrFeAl
Doped Heusler compounds CoCrFeAl with varying Cr to Fe
ratio were investigated experimentally and theoretically. The electronic
structure of the ordered, doped Heusler compound CoCrFeAl
( was calculated using different types of band structure
calculations. The ordered compounds turned out to be ferromagnetic with small
Al magnetic moment being aligned anti-parallel to the 3d transition metal
moments. All compounds show a gap around the Fermi-energy in the minority
bands. The pure compounds exhibit an indirect minority gap, whereas the
ordered, doped compounds exhibit a direct gap. Magnetic circular dichroism
(MCD) in X-ray absorption spectra was measured at the edges of Co,
Fe, and Cr of the pure compounds and the alloy in order to determine
element specific magnetic moments. Calculations and measurements show an
increase of the magnetic moments with increasing iron content. The
experimentally observed reduction of the magnetic moment of Cr can be explained
by Co-Cr site-disorder. The presence of the gap in the minority bands of
CoCrAl can be attributed to the occurrence of pure Co and mixed CrAl
(001)-planes in the structure. It is retained in structures with
different order of the CrAl planes but vanishes in the -structure with
alternating CoCr and CoAl planes.Comment: corrected author lis
Geometric, electronic, and magnetic structure of CoFeSi: Curie temperature and magnetic moment measurements and calculations
In this work a simple concept was used for a systematic search for new
materials with high spin polarization. It is based on two semi-empirical
models. Firstly, the Slater-Pauling rule was used for estimation of the
magnetic moment. This model is well supported by electronic structure
calculations. The second model was found particularly for Co based Heusler
compounds when comparing their magnetic properties. It turned out that these
compounds exhibit seemingly a linear dependence of the Curie temperature as
function of the magnetic moment. Stimulated by these models, CoFeSi was
revisited. The compound was investigated in detail concerning its geometrical
and magnetic structure by means of X-ray diffraction, X-ray absorption and
M\"o\ss bauer spectroscopies as well as high and low temperature magnetometry.
The measurements revealed that it is, currently, the material with the highest
magnetic moment () and Curie-temperature (1100K) in the classes of
Heusler compounds as well as half-metallic ferromagnets. The experimental
findings are supported by detailed electronic structure calculations
The statistical neuroanatomy of frontal networks in the macaque
We were interested in gaining insight into the functional properties of frontal networks based upon their anatomical inputs. We took a neuroinformatics approach, carrying out maximum likelihood hierarchical cluster analysis on 25 frontal cortical areas based upon their anatomical connections, with 68 input areas representing exterosensory, chemosensory, motor, limbic, and other frontal inputs. The analysis revealed a set of statistically robust clusters. We used these clusters to divide the frontal areas into 5 groups, including ventral-lateral, ventral-medial, dorsal-medial, dorsal-lateral, and caudal-orbital groups. Each of these groups was defined by a unique set of inputs. This organization provides insight into the differential roles of each group of areas and suggests a gradient by which orbital and ventral-medial areas may be responsible for decision-making processes based on emotion and primary reinforcers, and lateral frontal areas are more involved in integrating affective and rational information into a common framework
Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data
A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector
Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector
The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry
- …
