602 research outputs found
An approach to interfacing the brain with quantum computers: practical steps and caveats
We report on the first proof-of-concept system demonstrating how one can control a qubit with mental activity. We developed a method to encode neural correlates of mental activity as instructions for a quantum computer. Brain signals are detected utilizing electrodes placed on the scalp of a person, who learns how to produce the required mental activity to issue instructions to rotate and measure a qubit. Currently, our proof-of-concept runs on a software simulation of a quantum computer. At the time of writing, available quantum computing hardware and brain activity sensing technology are not sufficiently developed for real-time control of quantum states with the brain. But we are one step closer to interfacing the brain with real quantum machines, as improvements in hardware technology at both fronts become available in time to come. The paper ends with a discussion on some of the challenging problems that need to be addressed before we can interface the brain with quantum hardware
Minding impacting events in a model of stochastic variance
We introduce a generalisation of the well-known ARCH process, widely used for
generating uncorrelated stochastic time series with long-term non-Gaussian
distributions and long-lasting correlations in the (instantaneous) standard
deviation exhibiting a clustering profile. Specifically, inspired by the fact
that in a variety of systems impacting events are hardly forgot, we split the
process into two different regimes: a first one for regular periods where the
average volatility of the fluctuations within a certain period of time is below
a certain threshold and another one when the local standard deviation
outnumbers it. In the former situation we use standard rules for
heteroscedastic processes whereas in the latter case the system starts
recalling past values that surpassed the threshold. Our results show that for
appropriate parameter values the model is able to provide fat tailed
probability density functions and strong persistence of the instantaneous
variance characterised by large values of the Hurst exponent is greater than
0.8, which are ubiquitous features in complex systems.Comment: 18 pages, 5 figures, 1 table. To published in PLoS on
diArk 2.0 provides detailed analyses of the ever increasing eukaryotic genome sequencing data
<p>Abstract</p> <p>Background</p> <p>Nowadays, the sequencing of even the largest mammalian genomes has become a question of days with current next-generation sequencing methods. It comes as no surprise that dozens of genome assemblies are released per months now. Since the number of next-generation sequencing machines increases worldwide and new major sequencing plans are announced, a further increase in the speed of releasing genome assemblies is expected. Thus it becomes increasingly important to get an overview as well as detailed information about available sequenced genomes. The different sequencing and assembly methods have specific characteristics that need to be known to evaluate the various genome assemblies before performing subsequent analyses.</p> <p>Results</p> <p>diArk has been developed to provide fast and easy access to all sequenced eukaryotic genomes worldwide. Currently, diArk 2.0 contains information about more than 880 species and more than 2350 genome assembly files. Many meta-data like sequencing and read-assembly methods, sequencing coverage, GC-content, extended lists of alternatively used scientific names and common species names, and various kinds of statistics are provided. To intuitively approach the data the web interface makes extensive usage of modern web techniques. A number of search modules and result views facilitate finding and judging the data of interest. Subscribing to the RSS feed is the easiest way to stay up-to-date with the latest genome data.</p> <p>Conclusions</p> <p>diArk 2.0 is the most up-to-date database of sequenced eukaryotic genomes compared to databases like GOLD, NCBI Genome, NHGRI, and ISC. It is different in that only those projects are stored for which genome assembly data or considerable amounts of cDNA data are available. Projects in planning stage or in the process of being sequenced are not included. The user can easily search through the provided data and directly access the genome assembly files of the sequenced genome of interest. diArk 2.0 is available at <url>http://www.diark.org</url>.</p
New Insights into the Evolution of Wolbachia Infections in Filarial Nematodes Inferred from a Large Range of Screened Species
Wolbachia are intriguing symbiotic endobacteria with a peculiar host range that includes arthropods and a single nematode family, the Onchocercidae encompassing agents of filariases. This raises the question of the origin of infection in filariae. Wolbachia infect the female germline and the hypodermis. Some evidences lead to the theory that Wolbachia act as mutualist and coevolved with filariae from one infection event: their removal sterilizes female filariae; all the specimens of a positive species are infected; Wolbachia are vertically inherited; a few species lost the symbiont. However, most data on Wolbachia and filaria relationships derive from studies on few species of Onchocercinae and Dirofilariinae, from mammals.We investigated the Wolbachia distribution testing 35 filarial species, including 28 species and 7 genera and/or subgenera newly screened, using PCR, immunohistochemical staining, whole mount fluorescent analysis, and cocladogenesis analysis. (i) Among the newly screened Onchocercinae from mammals eight species harbour Wolbachia but for some of them, bacteria are absent in the hypodermis, or in variable density. (ii) Wolbachia are not detected in the pathological model Monanema martini and in 8, upon 9, species of Cercopithifilaria. (iii) Supergroup F Wolbachia is identified in two newly screened Mansonella species and in Cercopithifilaria japonica. (iv) Type F Wolbachia infect the intestinal cells and somatic female genital tract. (v) Among Oswaldofilariinae, Waltonellinae and Splendidofilariinae, from saurian, anuran and bird respectively, Wolbachia are not detected.The absence of Wolbachia in 63% of onchocercids, notably in the ancestral Oswaldofilariinae estimated 140 mya old, the diverse tissues or specimens distribution, and a recent lateral transfer in supergroup F Wolbachia, modify the current view on the role and evolution of the endosymbiont and their hosts. Further genomic analyses on some of the newly sampled species are welcomed to decipher the open questions
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Fungal chitinases: diversity, mechanistic properties and biotechnological potential
Chitin derivatives, chitosan and substituted chito-oligosaccharides have a wide spectrum of applications ranging from medicine to cosmetics and dietary supplements. With advancing knowledge about the substrate-binding properties of chitinases, enzyme-based production of these biotechnologically relevant sugars from biological resources is becoming increasingly interesting. Fungi have high numbers of glycoside hydrolase family 18 chitinases with different substrate-binding site architectures. As presented in this review, the large diversity of fungal chitinases is an interesting starting point for protein engineering. In this review, recent data about the architecture of the substrate-binding clefts of fungal chitinases, in connection with their hydrolytic and transglycolytic abilities, and the development of chitinase inhibitors are summarized. Furthermore, the biological functions of chitinases, chitin and chitosan utilization by fungi, and the effects of these aspects on biotechnological applications, including protein overexpression and autolysis during industrial processes, are discussed in this review
Within-individual phenotypic plasticity in flowers fosters pollination niche shift
Authors thank Raquel Sánchez, Angel Caravante, Isabel Sánchez Almazo, Tatiana López
Pérez, Samuel Cantarero, María José Jorquera and Germán Fernández for helping us during
several phases of the study and Iván Rodríguez Arós for drawing the insect silhouettes. This
research is supported by grants from the Spanish Ministry of Science, Innovation and
Universities (CGL2015-71634-P, CGL2015-63827-P, CGL2017-86626-C2-1-P, CGL2017-
86626-C2-2-P, UNGR15-CE-3315, including EU FEDER funds), Junta de Andalucía (P18-
FR-3641), Xunta de Galicia (CITACA), BBVA Foundation (PR17_ECO_0021), and a
contract grant to C.A. from the former Spanish Ministry of Economy and Competitiveness
(RYC-2012-12277). This is a contribution to the Research Unit Modeling Nature, funded by
the Consejería de Economía, Conocimiento, Empresas y Universidad, and European
Regional Development Fund (ERDF), reference SOMM17/6109/UGR.Phenotypic plasticity, the ability of a genotype of producing different phenotypes when exposed to different environments, may impact ecological interactions. We study here how within-individual plasticity in Moricandia arvensis flowers modifies its pollination niche. During spring, this plant produces large, cross-shaped, UV-reflecting lilac flowers attracting mostly long-tongued large bees. However, unlike most co-occurring species, M. arvensis keeps flowering during the hot, dry summer due to its plasticity in key vegetative traits. Changes in temperature and photoperiod in summer trigger changes in gene expression and the production of small, rounded, UV-absorbing white flowers that attract a different assemblage of generalist pollinators. This shift in pollination niche potentially allows successful reproduction in harsh conditions, facilitating M. arvensis to face anthropogenic perturbations and climate change. Floral phenotypes impact interactions between plants and pollinators. Here, the authors show that Moricandia arvensis displays discrete seasonal plasticity in floral phenotype, with large, lilac flowers attracting long-tongued bees in spring and small, rounded, white flowers attracting generalist pollinators in summer.Spanish Ministry of Science, Innovation and Universities (EU FEDER funds)
CGL2015-71634-P
CGL2015-63827-P
CGL2017-86626-C2-1-P
CGL2017-86626-C2-2-P
UNGR15-CE-3315Junta de Andalucia
P18-FR-3641Xunta de GaliciaBBVA Foundation
PR17_ECO_0021Spanish Ministry of Economy and Competitiveness
RYC-2012-12277Consejeria de Economia, Conocimiento, Empresas y Universidad
SOMM17/6109/UGREuropean Union (EU)
SOMM17/6109/UG
Symbiotic Associations in the Phenotypically-Diverse Brown Alga Saccharina japonica
The brown alga Saccharina japonica (Areschoug) Lane, Mayes, Druehl et Saunders is a highly polymorphic representative of the family Laminariaceae, inhabiting the northwest Pacific region. We have obtained 16S rRNA sequence data in symbiont microorganisms of the typical form (TYP) of S. japonica and its common morphological varieties, known as “longipes” (LON) and “shallow-water” (SHA), which show contrasting bathymetric distribution and sharp morphological, life history traits, and ecological differences. Phylogenetic analysis of the 16S rRNA sequences shows that the microbial communities are significantly different in the three forms studied and consist of mosaic sets of common and form-specific bacterial lineages. The divergence in bacterial composition is substantial between the TYP and LON forms in spite of their high genetic similarity. The symbiont distribution in the S. japonica forms and in three other laminarialean species is not related to the depth or locality of the algae settlements. Combined with our previous results on symbiont associations in sea urchins and taking into account the highly specific character of bacteria-algae associations, we propose that the TYP and LON forms may represent incipient species passing through initial steps of reproductive isolation. We suggest that phenotype differences between genetically similar forms may be caused by host-symbiont interactions that may be a general feature of evolution in algae and other eukaryote organisms. Bacterial symbionts could serve as sensitive markers to distinguish genetically similar algae forms and also as possible growth-promoting inductors to increase algae productivity
- …